В первом случае мы просто сокращаем все что можно. Но сокращаем только числитель со знаменателем. После все что осталось в числители умножаем и в знаменатели тоже умножаем и записываем ответ Во втором случае можно умножать либо превращая в дроби, если есть целая часть то в неправильную дробь. И дальше так же как в первом случае Либо второй умножаем в столбик. Записываем как показано на картинке. Умножаем не обращая на запятые. Т.е. возьмём для наглядности наш пример, умножаем сначала 2*6 после 2*4 записываем после черты ниже. Затем умножаем 3*6 затем 3*4 и записываем уже ниже под тройкой как на картинке. Затем все складываемся как написано. И затем считаем сколько у нас знаков после запятых в условиЯх и столько отсчитываем в конечном нашем числе.
Во втором случае можно умножать либо превращая в дроби, если есть целая часть то в неправильную дробь. И дальше так же как в первом случае
Либо второй умножаем в столбик. Записываем как показано на картинке. Умножаем не обращая на запятые. Т.е. возьмём для наглядности наш пример, умножаем сначала 2*6 после 2*4 записываем после черты ниже. Затем умножаем 3*6 затем 3*4 и записываем уже ниже под тройкой как на картинке. Затем все складываемся как написано. И затем считаем сколько у нас знаков после запятых в условиЯх и столько отсчитываем в конечном нашем числе.
Пошаговое объяснение:
1) ∫synx dx = -cosx +C (это табличный интеграл)
2) ∫sin5x dx = ║замена переменной u=5x; du = 5dx; ║=
=1/5 ∫sinu du =1/5(-cosu) +C =
= -1/5 cos5x +C
все остальные считаются аналогично
3) ∫sin10x dx = -1/10 cos 10x +C
4)∫sin(1/3)x dx = -3cos(1/3x) +C
5) ∫sin(1/8)x dx = -8cos(1/8)x +C
6) ∫cosx dx = sinx +C (табличный интеграл)
7)∫cos3x dx = 1/3 sin3x +C
8) ∫cos8x dx = 1/8 sin 8x +C
9) ∫cos (1/5 x) dx = 5sin (1/5 x) +C
10) ∫cos (1/2 x) = 2sin (1/2x) + C
11) ∫(cos3x *cos2x) dx = ║по формуле cosα *cosβ=1/2(cos(α-β) +cos(α+β)║=
=1/2∫cosx+cos5x)dx= 1/2 sin x + 1/10 sin5x + C
12) ∫(sin7x *cos5x) dx = ║по формуле sinα *cosβ=1/2(sin(α-β) +sin(α+β)║=
=1/2∫sin2x+sin12x)dx= 1/4(-cos2x) + 1/10(-cos12x) + C
13) по предыдущей формуле
∫(sin4x *cos2x)dx = 1/2∫sin2x =sin6x) = 1/4 (-cos2x) +1/12(-cos6x) +C