log^5 (7x-1)=log^5 (10x-13)
одз
7x - 1 > 0 x>1/7
10x - 13 > 0 x> 13/10
x∈(13/10, +∞)
7x - 1 = 10x - 13
3x = 12
x = 4
log2^2 (2-x)+5log^2 (2-x)=6
одз 2-х > 0 x < 2
log^2(2 - x) = t
t^2 + 5t - 6 = 0
t1 = 1
log^2(2 - x) = 1
2 = 2 - x
x = 0
t2 = -6
log^2(2 - x) = -6
2 - x = 2^-6
x = 2 - 1/2^6 = 1 63/64
log^5 (7x-1)=log^5 (10x-13)
одз
7x - 1 > 0 x>1/7
10x - 13 > 0 x> 13/10
x∈(13/10, +∞)
7x - 1 = 10x - 13
3x = 12
x = 4
log2^2 (2-x)+5log^2 (2-x)=6
одз 2-х > 0 x < 2
log^2(2 - x) = t
t^2 + 5t - 6 = 0
t1 = 1
log^2(2 - x) = 1
2 = 2 - x
x = 0
t2 = -6
log^2(2 - x) = -6
2 - x = 2^-6
x = 2 - 1/2^6 = 1 63/64