2) Так как x^2+5>0 для любого действительного х (знаменатель не равен 0 для любого х), то согласно арифмитическим действиям над непрерывными функциями и непрерывности многочленов данная функция непрерывная
3) Так как область определения симметричная относительно т. х=0, и
то функция четная
Так как данная функция дробно-рациональная, то она непериодична
1) Найти область определения функции - все числа, кроме х = -2. 2) Исследовать функцию на непрерывность - в точке х = -2 разрыв графика; 3) Определить, является ли данная функция четной, нечетной - подставим значение х = -х: у(х)=(х^2-5)/(x+2). у(-х)=(х^2-5)/(-x+2). Функция не чётная и не нечётная. 4) Найти интервал возрастания и убывания функции и точки экстремума. Производная равна y ' = (x²+4x+5)/(x+2)². Приравняем 0: достаточно приравнять 0 числитель, знаменатель не может быть равен 0. Выражение: x^2+4*x+5=0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=4^2-4*1*5=16-4*5=16-20=-4; Дискриминант меньше 0, уравнение не имеет корней. Значит, у функции нет экстремумов.5) Найти интервалы выпуклости и вогнутости графика функции и точки перегиба. Находим вторую производную. y '' = 2/(x+2)³. Она не может быть равной 0. Перегибов нет. Вторая производная при х < -2 отрицательна. График вогнут. При х > -2 график выпуклый. 6) Найти асимптоты графика функции. Горизонтальных асимптот нет. Вертикальная х = -2. Наклонные: для к находим предел f(x)/x к = 1. для в находим предел f(x)-x в = -2. Получаем уравнение у = х - 2.
1. Область определения
Область значений E(y)=(-1;1]
2) Так как x^2+5>0 для любого действительного х (знаменатель не равен 0 для любого х), то согласно арифмитическим действиям над непрерывными функциями и непрерывности многочленов данная функция непрерывная
3) Так как область определения симметричная относительно т. х=0, и
то функция четная
Так как данная функция дробно-рациональная, то она непериодична
4)
y'>0 при x<0
y'<0 при x>0
x=0 - точка локального максимума
при х є функция возростает
при х є функция убывает
5)
- точки перегиба
функция вогнута
на интервале
функция выпукла
6) так как x^2+5>0 , то вертикальных асимптот нет
значит есть только горизонтальная асимптота y=-1
кроме х = -2.
2) Исследовать функцию на непрерывность - в точке х = -2 разрыв графика;
3) Определить, является ли данная функция четной, нечетной - подставим значение х = -х:
у(х)=(х^2-5)/(x+2).
у(-х)=(х^2-5)/(-x+2).
Функция не чётная и не нечётная.
4) Найти интервал возрастания и убывания функции и точки экстремума.
Производная равна y ' = (x²+4x+5)/(x+2)².
Приравняем 0: достаточно приравнять 0 числитель, знаменатель не может быть равен 0.
Выражение: x^2+4*x+5=0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=4^2-4*1*5=16-4*5=16-20=-4; Дискриминант меньше 0, уравнение не имеет корней.
Значит, у функции нет экстремумов.5) Найти интервалы выпуклости и вогнутости графика функции и точки перегиба.
Находим вторую производную.
y '' = 2/(x+2)³.
Она не может быть равной 0. Перегибов нет.
Вторая производная при х < -2 отрицательна. График вогнут.
При х > -2 график выпуклый.
6) Найти асимптоты графика функции.
Горизонтальных асимптот нет.
Вертикальная х = -2.
Наклонные: для к находим предел f(x)/x к = 1.
для в находим предел f(x)-x в = -2.
Получаем уравнение у = х - 2.
Подробности в приложении.