ОБОЗНАЧИМ РАССТОЯНИЕ ЗА 1 время бегуна = 5 ч значит его скорость = 1/5 ( расстояние деленное на время)
время пешехода = 10 ч значит его скорость = 1/10 (расстояние деленное на время)
Известны две скорости, находим скорость сближения (скорость сближения находится путем складывания двух скоростей в данном случае): 1/10 + 1/5 = 1/10 + 2/10 = 3/10 - скорость сближения Так как расстояние 1 , находим через сколько встретятся ( путем деления расстояния (1) на скорость сближения) : 1 : 3/10 = 10/3 = 3 и 1/3 часа ответ : через 3 и 1/3 часа по всем вопросам в комменты
Нужно обратить внимание на важные детали, которые влияют на среднее арифметическое:
Уменьшаемые числа (изменяется общая сумма чисел)Количество единиц, которые заменили на нули (изменяется количество чисел)
Пусть x — количество единиц, которые уменьшили, y — количество остальных уменьшенных чисел. Получается, исходная сумма уменьшилась на x и y, а количество чисел — на x. Исходную сумму можно найти их первоначального среднего арифметического: 27 * 20 = 540. Тогда полученное среднее арифметическое:
. Чтобы это значение было максимальным, в данной разности нужно максимизировать уменьшаемое и минимизировать вычитаемое. Вычитаемое, очевидно, не меньше нуля, а нулём оно может быть только при y = 0, то есть если мы не изменяли числа, большие единицы.
Рассмотрим уменьшаемое: — это гипербола с отрицательным коэффициентом, то есть возрастающая функция. Значит, количество уменьшаемых единиц должно быть как можно больше (меньше 20).
Теперь вспомним про ограничение на числа: каждое из них не превышает 40. Тогда исходная сумма (если все не единицы заменить на 40) . Значит, максимально возможное значение среднего арифметического достигается при x = 6 и y = 0, а именно .
Действительно, такое значение достигается. Пусть было записано шесть единиц, число 14 и тринадцать чисел 40. Их среднее равно . Пусть уменьшили все единицы. Тогда чисел осталось 14, их среднее равно .
время бегуна = 5 ч
значит его скорость = 1/5 ( расстояние деленное на время)
время пешехода = 10 ч
значит его скорость = 1/10 (расстояние деленное на время)
Известны две скорости, находим скорость сближения (скорость сближения находится путем складывания двух скоростей в данном случае):
1/10 + 1/5 = 1/10 + 2/10 = 3/10 - скорость сближения
Так как расстояние 1 , находим через сколько встретятся ( путем деления расстояния (1) на скорость сближения) :
1 : 3/10 = 10/3 = 3 и 1/3 часа
ответ : через 3 и 1/3 часа
по всем вопросам в комменты
Пошаговое объяснение:
Нужно обратить внимание на важные детали, которые влияют на среднее арифметическое:
Уменьшаемые числа (изменяется общая сумма чисел)Количество единиц, которые заменили на нули (изменяется количество чисел)Пусть x — количество единиц, которые уменьшили, y — количество остальных уменьшенных чисел. Получается, исходная сумма уменьшилась на x и y, а количество чисел — на x. Исходную сумму можно найти их первоначального среднего арифметического: 27 * 20 = 540. Тогда полученное среднее арифметическое:
. Чтобы это значение было максимальным, в данной разности нужно максимизировать уменьшаемое и минимизировать вычитаемое. Вычитаемое, очевидно, не меньше нуля, а нулём оно может быть только при y = 0, то есть если мы не изменяли числа, большие единицы.
Рассмотрим уменьшаемое: — это гипербола с отрицательным коэффициентом, то есть возрастающая функция. Значит, количество уменьшаемых единиц должно быть как можно больше (меньше 20).
Теперь вспомним про ограничение на числа: каждое из них не превышает 40. Тогда исходная сумма (если все не единицы заменить на 40) . Значит, максимально возможное значение среднего арифметического достигается при x = 6 и y = 0, а именно .
Действительно, такое значение достигается. Пусть было записано шесть единиц, число 14 и тринадцать чисел 40. Их среднее равно . Пусть уменьшили все единицы. Тогда чисел осталось 14, их среднее равно .