решить Точки М(-3;у) и N(х;0) симметричны относительно точки О(4;1). Найдите х и у. 2. Точки М и М' симметричны относительно начала координат. найдите длину отрезка ММ', если М(-8;15)
ответ:Решим уравнение и найдем неизвестное значение х.
x * (x - 2) = (x - 3) * (x + 3);
Раскроем скобки и приведем подобные значения.
x * x - x * 2 = x^2 - 3^2;
x^2 - 2 * x = x^2 - 9;
Известные значения перенесем на одну сторону, а неизвестные значения на противоположную сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
x^2 - 2 * x - x^2 = -9;
-2 * x = -9;
2 * x = 9;
x = 9/2;
x = 4.5;
Значит, при х = 4.5 выражения x * (x - 2) и (x - 3) * (x + 3) равны.
Пусть во втором ящике х кг мандаринов, тогда в первом ящике 5х кг мандаринов. Когда из первого ящика взяли 25 кг мандаринов, там стало (5х - 25) кг мандаринов, а когда во второй положили еще 15 кг, там стало (х + 15) кг мандаринов.
По скольку после этого в обоих ящиках мандаринов стало поровну, то составим такое уравнение:
5х - 25 = х + 15
5х - х = 15 + 25
4х = 40
х = 40 : 4
х= 10 (кг) - мандаринов было первоначально во втором ящике.
10 * 5 = 50 (кг) - мандаринов было первоначально в первом ящике.
ответ: первоначально в первом ящике было 50 кг мандаринов, а во втором - 10 кг.
ответ:Решим уравнение и найдем неизвестное значение х.
x * (x - 2) = (x - 3) * (x + 3);
Раскроем скобки и приведем подобные значения.
x * x - x * 2 = x^2 - 3^2;
x^2 - 2 * x = x^2 - 9;
Известные значения перенесем на одну сторону, а неизвестные значения на противоположную сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
x^2 - 2 * x - x^2 = -9;
-2 * x = -9;
2 * x = 9;
x = 9/2;
x = 4.5;
Значит, при х = 4.5 выражения x * (x - 2) и (x - 3) * (x + 3) равны.
ответ: х = 4,5.
Пошаговое объяснение:
Пусть во втором ящике х кг мандаринов, тогда в первом ящике 5х кг мандаринов. Когда из первого ящика взяли 25 кг мандаринов, там стало (5х - 25) кг мандаринов, а когда во второй положили еще 15 кг, там стало (х + 15) кг мандаринов.
По скольку после этого в обоих ящиках мандаринов стало поровну, то составим такое уравнение:
5х - 25 = х + 15
5х - х = 15 + 25
4х = 40
х = 40 : 4
х= 10 (кг) - мандаринов было первоначально во втором ящике.
10 * 5 = 50 (кг) - мандаринов было первоначально в первом ящике.
ответ: первоначально в первом ящике было 50 кг мандаринов, а во втором - 10 кг.