В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Lyrryface
Lyrryface
13.07.2021 22:17 •  Математика

Решить уравнение | 1 - log x по основанию 1/6 | = | 3 - log x по основанию 1/6 | - 2

Показать ответ
Ответ:
s1nedesports
s1nedesports
08.07.2020 12:26
|1 - log(1\6)(x)| = |3 - log(1\6)(x)| - 2
ОДЗ: x > 0
далее рассматриваем ситуации с модулями.
1 - log(1\6)(x)  = 0
log(1\6)(x) = 1
x = 1\6
3 - log(1\6)(x) = 0
log(1\6)(x) = 1  = 3
x = 1\216
т.о. имеем три промежутка:
x < 1\216, 1\216 <= x <= 1\6, x > 1\6
Рассмотрим каждый из них:
x < 1\216
каждое из подмодульных выражений меньше нуля, поэтому все уравнение приобретает вид:
log(1\6)(x) -1  = log(1\6)(x) - 3 - 2
очевидно, что решений нет
1\216 <= x <= 1\6,
в этом случае второй модуль просто убирается
log(1\6)(x) - 1  = 3 - log(1\6)(x) - 2
log(1\6)(x) = 1
x = 1\6
Подходит
x > 1\6
оба модуля просто убираются
1 - log(1\6)(x) = 3 - log(1\6)(x) - 2
в этом случае решением является любое число с учетом ОДЗ и рассмотренного выше условия
Т.о ответ:
x >= 1\6
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота