Sin²x + Cos²x = 1
Sin²x = 1 - Cos²x
Cos²x = 1 - Sin²x
3sin²(x)+sinxcosx +4cos²(x)=3
3(1 - Cos²x) + SinxCosx + 4Cos²x - 3 = 0
3 - 3Cos²x + SinxCosx + 4Cos²x - 3 = 0
Cos²x + SinxCosx = 0
Cosx(Cosx + Sinx) = 0
Cosx = 0 => x = ±π/2 + πn, n∈Z
Cosx + Sinx = 0
Sinx = -Cosx
tg(x) = -1 => x = -π/4 + πn, n∈Z
Sin²x + Cos²x = 1
Sin²x = 1 - Cos²x
Cos²x = 1 - Sin²x
3sin²(x)+sinxcosx +4cos²(x)=3
3(1 - Cos²x) + SinxCosx + 4Cos²x - 3 = 0
3 - 3Cos²x + SinxCosx + 4Cos²x - 3 = 0
Cos²x + SinxCosx = 0
Cosx(Cosx + Sinx) = 0
Cosx = 0 => x = ±π/2 + πn, n∈Z
Cosx + Sinx = 0
Sinx = -Cosx
tg(x) = -1 => x = -π/4 + πn, n∈Z