Дорогой друг! За время знакомства с Вами число Ваших друзей с годами увеличивается в геометрической прогрессии, поэтому в этот день мы рады приветствовать Вас на площади S=πr², где r-дальность взора до горизонта. Сегодня Вы в центре сферы того же радиуса и число рукопожатий и пожеланий стремиться к →+∞. Первообразной для нашей дружбы является функция Вашей доброты, открытости, искренности, участия. Мы воспринимаем Вас как объединение множества А (лучших человеческих качеств) с множеством В(сильными качествами делового человека, сотрудника и партнера). Желаем Вам здоровья в степени n, где n-натуральное число, пропорциональное количеству дней рождения, пусть, функция Вашего благополучия будет возрастающей на всем протяжении и не будет иметь экстремумов, а гафик функции жизни описывается закономерностью удачи и попутного ветра.
Рассмотрим вариант, когда наименьшее число из десяти подряд больше 2. В данном ряду ровно 5 нечетных чисел, причем эти 5 последовательных нечетных чисел имеют вид:
2k + 1; 2(k+1) + 1; 2(k+2) + 1; 2(k+3) + 1; 2(k+4) + 1, где k - натуральное число.
Cреди чисел: k; k+1; k+2; k + 3; k + 4 обязательно найдется хотя бы одно такое число a1, дающее при делении на 3 остаток 1, тогда 2a1+1 будет кратно 3.
Таким образом, в таком ряду не более 4 простых чисел.
Привести пример ряда с 4 простыми числами не сложно: 3,4,5,6,7,8,9,10,11,12 - 4 простых числа.
Для 2 чисел тоже несложно:
20,21,22,23,24,25,26,27,28,29 (23,29)
Для 3 чисел тоже легко:
23,24,25,26,27,28,29,30,31 (23,29,31)
Может ли среди 10 подряд не быть простых чисел вообще?
Легко!
Возьмем любое число, которое одновременно кратно на 2,3,4,5,6,7,8,9,10,11 (например, k = 8*5*9*7*11 )
Но тогда числа:
k+2; k+3; k+4; k+5; k+6; k + 7; k + 8; k + 9; k + 10; k + 11 - cоставные, ибо кратны на прибавляемое к k число, при этом все эти числа больше 11.
Если продолжать смещать эти 10 чисел по одной единице вправо, то рано или поздно встретим первое простое число, ибо простых чисел бесконечно много, то есть мы рано или поздно нарвемся на 10 последовательных чисел с ровно одним простым числом.
0,1,2,3,4,5
Пошаговое объяснение:
Рассмотрим вариант, когда наименьшее число из десяти подряд больше 2. В данном ряду ровно 5 нечетных чисел, причем эти 5 последовательных нечетных чисел имеют вид:
2k + 1; 2(k+1) + 1; 2(k+2) + 1; 2(k+3) + 1; 2(k+4) + 1, где k - натуральное число.
Cреди чисел: k; k+1; k+2; k + 3; k + 4 обязательно найдется хотя бы одно такое число a1, дающее при делении на 3 остаток 1, тогда 2a1+1 будет кратно 3.
Таким образом, в таком ряду не более 4 простых чисел.
Привести пример ряда с 4 простыми числами не сложно: 3,4,5,6,7,8,9,10,11,12 - 4 простых числа.
Для 2 чисел тоже несложно:
20,21,22,23,24,25,26,27,28,29 (23,29)
Для 3 чисел тоже легко:
23,24,25,26,27,28,29,30,31 (23,29,31)
Может ли среди 10 подряд не быть простых чисел вообще?
Легко!
Возьмем любое число, которое одновременно кратно на 2,3,4,5,6,7,8,9,10,11 (например, k = 8*5*9*7*11 )
Но тогда числа:
k+2; k+3; k+4; k+5; k+6; k + 7; k + 8; k + 9; k + 10; k + 11 - cоставные, ибо кратны на прибавляемое к k число, при этом все эти числа больше 11.
Если продолжать смещать эти 10 чисел по одной единице вправо, то рано или поздно встретим первое простое число, ибо простых чисел бесконечно много, то есть мы рано или поздно нарвемся на 10 последовательных чисел с ровно одним простым числом.
Рассмотрим варианты с начальным числом менее 3:
1,2,3,4,5,6,7,8,9,10 (4 простых)
2,3,4,5,6,7,8,9,10,11 (5 простых)
То есть возможно от 0 до 5 простых чисел.