Смотрите, как это просто. Прямая АВ1 пересекает плоскость ВСА1 в центре боковой грани АА1В1В - то есть просто в точке пересечения диагоналей боковой грани - самой АВ1 и А1В, которая лежит в плоскости ВСА1.
Пусть это точка Е, найти длину АЕ проще простого (все вычисления - потом).
Поэтому всё, что нам надо, это придумать, как опустить перпендикуляр из точки А на плоскость ВСА1, и найти его длину (то есть расстояние от точки А до этой плоскости).
Сразу понятно, что этот перпендикуляр должен "идти посередине" граней - из за симметрии правильной призмы.
Строго это формулируется так - проведем сечение призмы через боковое ребро АА1 и АК, где К - середина ВС. Ясно, что ВС перпендикулярно АК - в основании лежит правильный треугольник. Отсюда следует, что плоскости АА1К и А1ВС перпендикулярны - дело в том, что если в одной плоскости есть ХОТЯ БЫ одна прямая, перпендикулярная другой плоскости, то эти плоскости перпендикулярны друг другу (это - самый важный момент в решении задач такого типа). Ну, а отсюда следует, что нужный нам перпендикуляр лежит в плоскости АА1К.
Построенное сечение - прямоугольник, и прямая А1К принадлежит как сечению, так и плоскости ВСА1. Если теперь в треугольнике АА1К из точки А провести перпендикуляр к А1К, то он будет перпендикулярен всей плоскости ВСА1, поскольку, кроме А1К, он перпендикулярен еще и ВС.
АК = 3 (боковая сторона треугольника 2√3, высота 2√3*√3/2 = 3), то есть треугольник АА1К - "Египетский" 3,4,5. Это очень упрощает вычисления - высота АН к гипотенузе А1К равна 3*4/5 = 2,4. Это и есть расстояние от А до плоскости ВСА1. АН = 2,4.
А длина наклонной АЕ равна половине диагонали боковой грани - прямоугольника со сторонами 4 и 2√3. Легко вычислить, что это √7 (ну посчитайте :) по теореме Пифагора).
Синус искомого угла АЕН равен 2,4/√7 = 12/(5√7).
Я конечно мог что-то не так сосчитать - проверьте :)
Задание №1
-12 находится левее от числа -6.
Есть как бы правило: начинаются (если это координатная плоскость)
отрицательные числа так(-12;-11;-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8;9;10;11;12.
Ну как то так.
Задание №2
) 3 1/3-0.8-2 3/4+2.5+0.3+1 7/12= (2.5+0.3-0.8)+
(3 1/3-2 3/4+1 7/12)= 2+(3 4/12+1 7/12-2 9/12)=2+2 2/12= 4 1/6
второй не знаю ссори
надеюсь хоть как то
Задание №3
- 4,1 + (- 8,3) - (- 7,3) - (+ 1,9) = - 4,1 - 8,3 + 7,3 - 1,9 = - (4,1 + 1,9) - (8,3 - 7,3) =
= - 6 - 1 = - ( 6+ 1) = - 7
Задание №4
хз
Задание №5
8|-|5|=8-5=3
7-|-5|=7-5=2
3>2
|8|-|5|>7-|-5|
Пошаговое объяснение:
Смотрите, как это просто. Прямая АВ1 пересекает плоскость ВСА1 в центре боковой грани АА1В1В - то есть просто в точке пересечения диагоналей боковой грани - самой АВ1 и А1В, которая лежит в плоскости ВСА1.
Пусть это точка Е, найти длину АЕ проще простого (все вычисления - потом).
Поэтому всё, что нам надо, это придумать, как опустить перпендикуляр из точки А на плоскость ВСА1, и найти его длину (то есть расстояние от точки А до этой плоскости).
Сразу понятно, что этот перпендикуляр должен "идти посередине" граней - из за симметрии правильной призмы.
Строго это формулируется так - проведем сечение призмы через боковое ребро АА1 и АК, где К - середина ВС. Ясно, что ВС перпендикулярно АК - в основании лежит правильный треугольник. Отсюда следует, что плоскости АА1К и А1ВС перпендикулярны - дело в том, что если в одной плоскости есть ХОТЯ БЫ одна прямая, перпендикулярная другой плоскости, то эти плоскости перпендикулярны друг другу (это - самый важный момент в решении задач такого типа). Ну, а отсюда следует, что нужный нам перпендикуляр лежит в плоскости АА1К.
Построенное сечение - прямоугольник, и прямая А1К принадлежит как сечению, так и плоскости ВСА1. Если теперь в треугольнике АА1К из точки А провести перпендикуляр к А1К, то он будет перпендикулярен всей плоскости ВСА1, поскольку, кроме А1К, он перпендикулярен еще и ВС.
АК = 3 (боковая сторона треугольника 2√3, высота 2√3*√3/2 = 3), то есть треугольник АА1К - "Египетский" 3,4,5. Это очень упрощает вычисления - высота АН к гипотенузе А1К равна 3*4/5 = 2,4. Это и есть расстояние от А до плоскости ВСА1. АН = 2,4.
А длина наклонной АЕ равна половине диагонали боковой грани - прямоугольника со сторонами 4 и 2√3. Легко вычислить, что это √7 (ну посчитайте :) по теореме Пифагора).
Синус искомого угла АЕН равен 2,4/√7 = 12/(5√7).
Я конечно мог что-то не так сосчитать - проверьте :)