В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Лера20888
Лера20888
30.11.2020 01:51 •  Математика

Решить: вычислить площадь фигуры, ограниченной линиями y=x^2-5x+6; y=0

Показать ответ
Ответ:
serikovas87
serikovas87
21.08.2020 16:24
x^2-5x+6=0
x_{1}=2; x_{2}=3
- \int\limits^3_2 {(x^2-5x+6)} \, dx 
=-( \frac{x^3}{3}- \frac{5x^2}{2}+6x)|^3_2
=- \frac{27}{3} + \frac{45}{2} -18+ \frac{8}{3} - \frac{20}{2} +12= \frac{1}{6}
0,0(0 оценок)
Ответ:
Aidanа1307
Aidanа1307
21.08.2020 16:24
Y=x²-5x+6;y=0
x²-5x+6=0
D=25-24=1
x=(5±1)/2
x1=2;x2=3
S=интеграл (2 до3)(х²-5х+6)dx=
x³/3-5x²/2+6x(23)=
27/3-45/2+18-(8/3-20/2+12)=
9-22,5+18-8/3+10-12=
25-22,5-8/3=2,5-8/3=5/2-8/3=
(15-16)/6=-1/6
|-1/6|=1/6
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота