Решить выполнить действия (сложение, вычитание, умножение и деление) над комплексными числами представив результат в форме z1=4+2i и z2=-3+2i раскрыть скобки используя формулы сокращенного умножения (8+6i)(8-6i) решите уравнения 2x²+10x+17=0
Найдем трехзначное число, кратное 24, сумма цифр которого также равна 24. Пусть искомое число abc, где а - число сотен, b - число десятков, а с - число единиц. По условиям задачи a+b+c=24, а также abc:24 без остатка. 24 можно представить как сумму трех чисел: 9+8+7 9+7+8 7+9+8 7+8+9 8+9+7 8+7+9 6+9+9 9+9+6 9+6+9 8+8+8 Число 24 можно представить как произведение чисел 3, 4 и 2, значит искомое трехзначное число должно быть кратным 2 (заканчиваться на 0 или четное число), 4 (последние две цифры должны делиться на 4) и 3 (сумма цифр числа кратна 3). Трем кратны все числа (т.к.сумма 24:3=6), а двум:
дана дробь, в которой знаменатель имеет переменную х ,а также в знаменателе имеется корень⇒ знаменатель не может быть отрицательным ( так как вычленять из под корня отрицательные значения нельзя) и не может быть равен нулем(делить на ноль нельзя)
получаем
√(6x-5)>0
6x-5>0
6x>5
x ∈ (1.2;∞) ⇒ область определения (1.2;∞)
b)
тут тоже самое но √(x²-4x+3)≥0 (так как вычленять из под корня отрицательные значения нельзя)
Пусть искомое число abc, где а - число сотен, b - число десятков, а с - число единиц.
По условиям задачи a+b+c=24, а также abc:24 без остатка.
24 можно представить как сумму трех чисел:
9+8+7
9+7+8
7+9+8
7+8+9
8+9+7
8+7+9
6+9+9
9+9+6
9+6+9
8+8+8
Число 24 можно представить как произведение чисел 3, 4 и 2, значит искомое трехзначное число должно быть кратным 2 (заканчиваться на 0 или четное число), 4 (последние две цифры должны делиться на 4) и 3 (сумма цифр числа кратна 3).
Трем кратны все числа (т.к.сумма 24:3=6), а двум:
9+7+8
7+9+8
9+9+6
8+8+8
Четырем кратны: 9+9+6=8+8+8 (96:4=24; 88:4=22)
Проверим на кратность 24:
996:24=41,5
888:24=37
ответ: 888
область определения это все допустимы значения х
a)
дана дробь, в которой знаменатель имеет переменную х ,а также в знаменателе имеется корень⇒ знаменатель не может быть отрицательным ( так как вычленять из под корня отрицательные значения нельзя) и не может быть равен нулем(делить на ноль нельзя)
получаем
√(6x-5)>0
6x-5>0
6x>5
x ∈ (1.2;∞) ⇒ область определения (1.2;∞)
b)
тут тоже самое но √(x²-4x+3)≥0 (так как вычленять из под корня отрицательные значения нельзя)
x-2≠0 (делить на ноль нельзя)
x-2≠2 ⇒x≠2 ⇒ x ∈ (-∞;2) ∪ (2;∞)
√(x²-4x+3)≥0
x²-4x+3≥0
a=1>0 ⇒ интервал знакопостоянства таков
+ корень уравнения - корень уравнения +
x²-4x+3=0
D=(-4)²-4×3×1=4
x=(4±√4)÷2=1 и 3
учитывая интервал и нестрогое неравенство
⇒ x ∈ (-∞;1] ∪ [3;∞)
теперь находим область определения
( (-∞;1] ∪ [3;∞) ) ∩ ( (-∞;2) ∪ (2;∞) ) = (-∞;1] ∪ [3;∞)
область определения (-∞;1] ∪ [3;∞)
c)
тут уже логарифмы результат логарифмы не должен быть 0 а значит
х+2≠1 ⇒х≠2 ⇒ х ∈ ( -∞;-1) ∪ (-1;∞)
в числителе корень значит
√(х-4)≥0
x-4≥0
x ∈ [4;∞)
ищем область определения
[4;∞) ∩ ( ( -∞;-1) ∪ (-1;∞) ) = [4;∞)
область определения [4;∞)