РЕШИТЬ ЗАДАЧИ \
1. Сколько четырехбуквенных слов можно образовать из букв слова "сапфир"? Сколько из них не содержат буквы "р"? Сколько таких, которые начинаются с буквы "с" и оканчиваются буквой "р"?
2. Какое число различных парных нарядов можно назначить из бригады в 12 человек? Сколькими можно составить такой наряд, если один из двух членов бригады должен быть назначен старшим?
3. Набирая номер телефона, абонент забыл последние три цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.
4. Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент знает, предложенные ему экзаменатором, 3 вопроса.
5. Найдите вероятность того, что наудачу выбранное двузначное число не содержит ни одной двойки
6. В ящике 10 деталей, из них 5 бракованных. Наудачу извлечены 3 детали. Найти вероятность того, что среди извлеченных деталей: а) нет бракованных; б) нет годных; в) ровно 2 годных.
7. Вероятность совершения покупки первым покупателем равна 0,7, а вторым – 0,8. Какова вероятность того, что будет совершена хотя бы одна покупка, если они совершаются независимо друг от друга?
8. В урне 5 белых и 4 черных шара. Из нее вынимаются подряд два шара. Найти вероятность того, что оба шара белые.
9. Имеется две урны, в первой 2 белых и 3 черных шара, во второй – 4 белых и 2 черных. Из каждой урны вынимается по одному шару. Найти вероятность того, что шары будут: а) одного и того же цвета; б) разного цвета.
S = 433.7475 см. в квадрате
Пошаговое объяснение:
Пусть игровая площадка это abcd
Ширина (a) - ?, но на 3.5 метров меньше длины
Длина (b) - ?
P = 83.6 м
S - ?
Для начала найдем стороны прямоугольника abcd
P = (a*2)+(b*2)
Сделаем замену a = x, b = x - 3.5
Подставим значения в формулу периметра и составим уравнение
83.6 = ((x - 3.5)*2)+(x*2)
83.6 = -7 + 4x
x = 22.65
Проверим
83.6 = ((22.65-3.5)*2)+(22.65*2)
83.6 = 19.15*2+22.65*2
83.6 = 38.3 + 45.3
83.6 = 83.6
Отсюда имеем a = 22.65, b = 19.15
Вспомним формулу площади для прямоугольника S = ab
Подставим
S = 22.65*19.15 = 433.7475 (см. в квадрате)
35 градусов
Пошаговое объяснение:
Достроим данную фигуру до треугольника, проведя прямую AC, а точкой D обозначим вершину угла в 60 градусов. Обозначим градусную меру угла CAD буквой a, а угол ACD - буквой b. Тогда сумму углов треугольника ABC можно найти как сумму углов ABC = x, BAC = BAD + CAD = 15 + a и BCA = BCD + ACD = 10 + b. Поскольку сумма углов треугольника равна 180 градусов, то можно составить уравнение:
x + 15 + a + 10 + b = 180
Упростим его:
x + 25 + ( a + b ) = 180
Аналогично в треугольнике ACD, сумма углов треугольника ACD равна сумме углов CAD = a, ACD = b и ADC = 60. Тогда
( a + b ) + 60 = 180
Поскольку в обоих уравнениях правые части одинаковы, то можно приравнять их левые части:
x + 25 + ( a + b ) = ( a + b ) + 60
x + 25 = 60
x = 60 - 25
x = 35