Для решения нужно вспомнить некоторые правила для сторон треугольников: a + b > c | a + c > b | b + c > a
Чтобы избежать таких казусов, мы заключим сторону a в неравенство:
Начинаем перебор: Длина наибольшей стороны равняется а) 9, поэтому может быть [1] вариант (9, 9, 9) б) 10, поэтому вариантов может быть [2] (10, 10, 7), (10, 9, 8) в) 11, поэтому вариантов может быть [4] (11, 11, 5), (11, 10, 6), (11, 9, 7) и (11, 8, 8). г) 12, поэтому вариантов может быть [5] (12, 12, 3), (12, 11, 4), (12, 10, 5), (12, 9, 6), (12, 8, 7). д) 13, поэтому вариантов может быть [7] (13, 13, 1), (13, 12, 2), (13, 11, 3), (13, 10, 4), (13, 9, 5), (13, 8, 6), (13, 7, 7) Итого: 1 + 2 + 4 + 5 + 7 = 19
a + b > c | a + c > b | b + c > a
Чтобы избежать таких казусов, мы заключим сторону a в неравенство:
Начинаем перебор:
Длина наибольшей стороны равняется
а) 9, поэтому может быть [1] вариант (9, 9, 9)
б) 10, поэтому вариантов может быть [2] (10, 10, 7), (10, 9, 8)
в) 11, поэтому вариантов может быть [4] (11, 11, 5), (11, 10, 6), (11, 9, 7) и (11, 8, 8).
г) 12, поэтому вариантов может быть [5] (12, 12, 3), (12, 11, 4), (12, 10, 5), (12, 9, 6), (12, 8, 7).
д) 13, поэтому вариантов может быть [7] (13, 13, 1), (13, 12, 2), (13, 11, 3), (13, 10, 4), (13, 9, 5), (13, 8, 6), (13, 7, 7)
Итого: 1 + 2 + 4 + 5 + 7 = 19
ответ: 19.
v₁ = S/t (км/ч)
Скорость товарного поезда:
v₂ = S/(t+4) (км/ч)
Скорость пассажирского поезда:
v₃ = S/(t+1) (км/ч)
Тогда:
v₂/v₃ = 5/8
(S:(t+4))/(S:(t+1)) = 5/8
(t+1)/(t+4) = 5/8
5t+20 = 8t+8
3t = 12
t = 4 (ч) - время в пути скорого поезда.
Так как v₂ = v₁ - 50, то:
S/(t+4) = S/t - 50
S/8 = 2S/8 - 50
S/8 = 50
S = 400 (км) - расстояние между городами.
Скорость скорого поезда: v₁ = S/t = 400:4 = 100 (км/ч)
ответ: 100 км/ч