В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Решите дифференциальное уравнение первого порядка y'tgx-y=1 ; если y(п/2)=1

Показать ответ
Ответ:
милана59
милана59
05.10.2020 05:41
решите дифференциальное уравнение первого порядка
y'tgx-y=1 ; если y(П/2)=1

y'tgx-y=1 ⇒  y'tgx=(y+1 )       tgx· (dy)/(dx) =(y+1) ⇔(dy)/(y+1)=dx/tgx

∫(dy)/(y+1)=∫dx/tgx   ∫dx/tgx   =∫(cosx/sinx)dx

ln Iy+1 I=ln Isinx I +ln C  ⇔  Iy+1 I=C·sinx  

используем начальные условия, найдем C: y(П/2)=1
I1+1 I=C·sin(π/2)  , sin(π/2)  =1,  2=C 

  Iy+1 I=C·sinx  , если y(П/2)=1,   Iy+1 I=2·sinx - Решение задачи Коши
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота