ну, в первой загадке вы опечатались в условии, похоже:
должно быть так: "через точку а к окружности w (0,r)проведены". а то выходит, что а принадлежит окружности, при этом через нее аж две касательные
ну а доказывать, полагаю, надо через равенство треугольников, образующихся при соединении этой точки а с центром окружности и радиусов, проведенных к точкам касания в и с.
треугольники аво и асо:
во-первых, прямоугольные. (углы в и с прямые, ибо радиус к точке касания перперндикулярен касательной);
во-вторых, имеют равные катеты ов и ос (длина их - радиус окружности);
в-третьих - у них равные гипотенузы (она у них общая, это отрезок ао);
значит они равны (по углу и двум сторонам)
следовательно ав=ас.
согласны?
а вот что думаю про вторую :
раз угол прямой, то, соединив отрезками точки касания с центром окружности, получим симпатичный квадрат, диагональ которого - та самая хорда.
ну, а у квадрата диагонали равны и перпендикулярны друг другую.
значит проводим вторую диагональ (она как раз из центра к хорде под прямым углом пойдет) и сразу становится видно, что расстояние от хорды то центра окружности окружности - ровно половина диагонали, т.е.
Если два тела одновременно движутся в противоположных направлениях, то расстояние между ними постепенно увеличивается.Скорость удаления – это расстояние, которое проходят тела за 1 ч при движении в противоположных направлениях. Пример 1. Два лыжника одновременно вышли из пункта А в противоположных направлениях. Первый лыжник шёл со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии друг от друга они будут через 3 ч?Схема к задаче: Решение км) – расстояние, которое первый лыжник за 3 ч2)14 • 3 = 42 (км) – расстояние, которое второй лыжник за 3 ч3)36 + 42 = 78 (км км/ч) – скорость удаления2)26 • 3 = 78 (км)ответ: 78 км.
ну, в первой загадке вы опечатались в условии, похоже:
должно быть так: "через точку а к окружности w (0,r)проведены". а то выходит, что а принадлежит окружности, при этом через нее аж две касательные
ну а доказывать, полагаю, надо через равенство треугольников, образующихся при соединении этой точки а с центром окружности и радиусов, проведенных к точкам касания в и с.
треугольники аво и асо:
во-первых, прямоугольные. (углы в и с прямые, ибо радиус к точке касания перперндикулярен касательной);
во-вторых, имеют равные катеты ов и ос (длина их - радиус окружности);
в-третьих - у них равные гипотенузы (она у них общая, это отрезок ао);
значит они равны (по углу и двум сторонам)
следовательно ав=ас.
согласны?
а вот что думаю про вторую :
раз угол прямой, то, соединив отрезками точки касания с центром окружности, получим симпатичный квадрат, диагональ которого - та самая хорда.
ну, а у квадрата диагонали равны и перпендикулярны друг другую.
значит проводим вторую диагональ (она как раз из центра к хорде под прямым углом пойдет) и сразу становится видно, что расстояние от хорды то центра окружности окружности - ровно половина диагонали, т.е.
40/2 = 20см
ура?
))