Если рядом сидят два химика, то правый скажет правду: НЕТ. Если рядом сидят два алхимика, то правый соврет: НЕТ. Таким, образом, ответ НЕТ возникает в том случае, если рядом сидят два одинаковых человека: два химика или два алхимика. Допустим, у нас n химиков. Тогда ряд из (n+1) рядом сидящих алхимиков дает n ответов НЕТ. Ряд надо составлять из алхимиков, чтобы химиков получилось минимальное, а не максимальное количество. Пусть все химики сидят через одного с алхимиками. ХАА...АХАХА...ХА Разобьем их на пары (ХА)А...А(ХА)(ХА)...(ХА) Здесь n А подряд и n пар ХА. Всего n + n А и n Х. n + n + n = 160 3n = 160 Но 160 не делится на 3, поэтому такого не может быть. Значит, есть хотя бы одна пара Х подряд. (ХА)(ХХ)А...А(ХА)(ХА)...(ХА) Здесь 2 химика, еще (n-2) пары ХА и ряд из n А. Химиков по-прежнему n, а алхимиков n + (n-2) n + n - 2 + n = 160 3n - 2 = 160. 3n = 162 n = 54
Если рядом сидят два алхимика, то правый соврет: НЕТ.
Таким, образом, ответ НЕТ возникает в том случае, если рядом сидят два одинаковых человека: два химика или два алхимика.
Допустим, у нас n химиков.
Тогда ряд из (n+1) рядом сидящих алхимиков дает n ответов НЕТ.
Ряд надо составлять из алхимиков, чтобы химиков получилось минимальное, а не максимальное количество.
Пусть все химики сидят через одного с алхимиками.
ХАА...АХАХА...ХА
Разобьем их на пары
(ХА)А...А(ХА)(ХА)...(ХА)
Здесь n А подряд и n пар ХА. Всего n + n А и n Х.
n + n + n = 160
3n = 160
Но 160 не делится на 3, поэтому такого не может быть.
Значит, есть хотя бы одна пара Х подряд.
(ХА)(ХХ)А...А(ХА)(ХА)...(ХА)
Здесь 2 химика, еще (n-2) пары ХА и ряд из n А.
Химиков по-прежнему n, а алхимиков n + (n-2)
n + n - 2 + n = 160
3n - 2 = 160.
3n = 162
n = 54
1 прямоугол. 2 прямоугол.
а-16 см а-12 см
b-? b-?
Р-? Р-32 см
S-? = S-?
S=a*b
b=S:а Р=(а+b)*2
b=48:16 подставляем числа:
b=3(cм) (12+b)*2=32
Р=(а+b)*2 раскрываем скобки:
Р=(16+3)*2
Р=38(см) 24+2b=32
2b=32-24
2b=8
b=8:2
b=4 (см)-ширина 2-ого прямоугольника
S=a*b
S=12*4
S=48 (см2)- площадь 2-ого прямоугольника.
ответ:периметр 1-ого прямоугольника 38 см