Вообще, задачу легко можно представить на диаграмме Эйлер-Венна, но в программе Перспектива (учебники Дорофеев, Миракова, Бука) эти диаграммы не изучались. А вот задачи по ним, почему-то, даются...
Что же, будем решать без построения диаграммы, хотя это было бы очень наглядно и хорошо прояснило бы решение.
Пошаговое объяснение:
1) 100 − 10 = 90 (ч.) - знают какой-либо язык
2) 90 − 75 = 15 (ч.) - знают французский, но не знают немецкого
3) 90 − 83 = 7 (ч.) - знают немецкий язык, но не знают французского
4) 90 − (15 + 7) = 90 − 22 = 68 (ч.) - знают оба языка
Разложим на простые множители 84
84 = 2 • 2 • 3 • 7
Разложим на простые множители 144
144 = 2 • 2 • 2 • 2 • 3 • 3
Выберем одинаковые простые множители в обоих числах.
2 , 2 , 3
Находим произведение одинаковых простых множителей и записываем ответ
НОД (84; 144) = 2 • 2 • 3 =12
Разложим на простые множители 72
72 = 2 • 2 • 2 • 3 • 3
Разложим на простые множители 96
96 = 2 • 2 • 2 • 2 • 2 • 3
Выберем в разложении меньшего числа (72) множители, которые не вошли в разложение
3
Добавим эти множители в разложение бóльшего числа
2 , 2 , 2 , 2 , 2 , 3 , 3
Полученное произведение запишем в ответ.
НОК (72, 96) = 2 • 2 • 2 • 2 • 2 • 3 • 3 = 288
Пошаговое объяснение:
Вообще, задачу легко можно представить на диаграмме Эйлер-Венна, но в программе Перспектива (учебники Дорофеев, Миракова, Бука) эти диаграммы не изучались. А вот задачи по ним, почему-то, даются...
Что же, будем решать без построения диаграммы, хотя это было бы очень наглядно и хорошо прояснило бы решение.
Пошаговое объяснение:
1) 100 − 10 = 90 (ч.) - знают какой-либо язык
2) 90 − 75 = 15 (ч.) - знают французский, но не знают немецкого
3) 90 − 83 = 7 (ч.) - знают немецкий язык, но не знают французского
4) 90 − (15 + 7) = 90 − 22 = 68 (ч.) - знают оба языка
ответ: 68 туристов знали оба языка.