При вытаскивании карт рассуждаем в такой модели: вынутые карты кладутся на стол в чётком порядке: первая слева, вторая по центру, третья – справа. Так, наример тройки «Т♦ К♦ 9♥» и «9♥ Т♦ К♦» считаются различными. Т.е., короче говоря, рассматриваем упорядоченные тройки.
All. Всего варианто вытащить три карты в такой модели поведения: Первая 36-стью Вторая 35-тью Третья – 34-мя
Всего вариантов упорядоченной выборки – 36*35*34.
I. Вынуть на первое место бубну можно 9-тью вынуть на второе место бубну можно 8-мью вынуть НЕ БУБНУ на третье место можно 27-мью НЕ 34!). Всего с НЕ-БУБНОЙ на третьем месте.
II. Вынуть на первое место бубну можно 9-тью вынуть НЕ БУБНУ на второе место можно 27-мью НЕ 34!), вынуть на третье место бубну можно 8-мью Всего с НЕ-БУБНОЙ на втором месте.
III. Вынуть НЕ БУБНУ на первое место можно 27-мью НЕ 34!), вынуть на второе место бубну можно 9-тью вынуть на третье место бубну можно 8-мью Всего с НЕ-БУБНОЙ на втором месте.
0. Вынуть на первое место бубну можно 9-тью вынуть на второе место бубну можно 8-тью вынуть на третье место бубну можно 7-мью Всего со всеми бубнами.
Всего подходящих вариантов : 9*8*27 + 9*8*27 + 9*8*27 + 9*8*7 = 9*8*(3*27+7) = 9*8*88
*** было бы ошибкой считать во всех трёх случаях I – III не 27, а 34 и не учитывать отдельно ситуацию [0], так как при этом получилось бы выражение 9*8*102, вместо 9*8*88, поскольку в этом случае были бы посчитаны трижды такие упорядоченные тройки, как, например «Т♦ К♦ Д♦» , когда Д♦ выбрана из 34, либо K♦ выбран из 34, либо Т♦, а две остальные только из бубен.
Итоговая вероятность
При вытаскивании карт рассуждаем в другой модели: вынутые карты кладутся на стол беспорядочно, т.е. тройки «Т♦ К♦ 9♥» , «9♥ Т♦ К♦» и т.п. считаются неразличимыми. Т.е., короче говоря, рассматриваем неупорядоченные тройки.
All. Всего варианто вытащить три карты в такой модели поведения: Первая 36-стью Вторая 35-тью Третья – 34-мя И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше:
Всего вариантов упорядоченной выборки – 36*35*34/6 = 6*35*34.
ДВЕ БУБНЫ Вынуть на одно из мест бубну можно 9-тью вынуть на ещё одно из мест бубну можно 8-мью причём эти места можно поменять местами, значит выбрать пары бубен можно К ним можно приложить НЕ БУБНУ 27-мью НЕ 34!). Всего с одной НЕ-БУБНОЙ на одном из мест мест.
ТРИ БУБНЫ Вынуть на одно из мест бубну можно 9-тью вынуть на ещё одно из мест бубну можно 8-тью вынуть на последнее из мест бубну можно 7-мью И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше: Всего со всеми бубнами.
Всего подходящих вариантов : 9*4*27 + 3*4*7 = 3*4*(3*27+7) = 3*4*88
*** было бы ошибкой смешивать случай с двумя и с тремя бубнами, считая третью карту не одной из 27, а сразу одной из 34, так как при этом получилось бы выражение 3*4*102, вместо 3*4*88, поскольку в этом случае были бы посчитаны трижды такие неупорядоченные тройки, как, например «Т♦ К♦ Д♦», когда Т♦ выбран из 34, либо K♦ выбран из 34, либо Д♦, а две остальные из девяти и восьми.
I этап. Составление математической модели. Пусть цена мяча х руб. Тогда у Саши было (х-50) руб., у Миши (х-60) руб. Общая сумма имеющихся денег у мальчиков: (х-50) + (х-60) Зная , что после покупки мяча, у мальчиков осталось 40 рублей, составим уравнение. х = (х-50) +(х-60) -40
II этап. Работа с математической моделью. Т.е. решение уравнения. х = х-50+х-60-40 х=2х-150 х-2х=-150 -х=-150 х=150
III этап. Оценка результата. Если 150 руб. стоил мяч , то у Саши было (150-50) =100 руб. , а у Миши (150-60) = 90 руб. , после покупки мяча у них осталось (100+90)-150 = 40 руб. ответ удовлетворяет всем условиям задачи.
All.
Всего варианто вытащить три карты в такой модели поведения:
Первая 36-стью
Вторая 35-тью
Третья – 34-мя
Всего вариантов упорядоченной выборки – 36*35*34.
I.
Вынуть на первое место бубну можно 9-тью
вынуть на второе место бубну можно 8-мью
вынуть НЕ БУБНУ на третье место можно 27-мью НЕ 34!).
Всего с НЕ-БУБНОЙ на третьем месте.
II.
Вынуть на первое место бубну можно 9-тью
вынуть НЕ БУБНУ на второе место можно 27-мью НЕ 34!),
вынуть на третье место бубну можно 8-мью
Всего с НЕ-БУБНОЙ на втором месте.
III.
Вынуть НЕ БУБНУ на первое место можно 27-мью НЕ 34!),
вынуть на второе место бубну можно 9-тью
вынуть на третье место бубну можно 8-мью
Всего с НЕ-БУБНОЙ на втором месте.
0.
Вынуть на первое место бубну можно 9-тью
вынуть на второе место бубну можно 8-тью
вынуть на третье место бубну можно 7-мью
Всего со всеми бубнами.
Всего подходящих вариантов : 9*8*27 + 9*8*27 + 9*8*27 + 9*8*7 = 9*8*(3*27+7) = 9*8*88
*** было бы ошибкой считать во всех трёх случаях I – III не 27, а 34 и не учитывать отдельно ситуацию [0], так как при этом получилось бы выражение 9*8*102, вместо 9*8*88, поскольку в этом случае были бы посчитаны трижды такие упорядоченные тройки, как, например «Т♦ К♦ Д♦» , когда Д♦ выбрана из 34, либо K♦ выбран из 34, либо Т♦, а две остальные только из бубен.
Итоговая вероятность
При вытаскивании карт рассуждаем в другой модели: вынутые карты кладутся на стол беспорядочно, т.е. тройки «Т♦ К♦ 9♥» , «9♥ Т♦ К♦» и т.п. считаются неразличимыми. Т.е., короче говоря, рассматриваем неупорядоченные тройки.
All.
Всего варианто вытащить три карты в такой модели поведения:
Первая 36-стью
Вторая 35-тью
Третья – 34-мя
И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше:
Всего вариантов упорядоченной выборки – 36*35*34/6 = 6*35*34.
ДВЕ БУБНЫ
Вынуть на одно из мест бубну можно 9-тью
вынуть на ещё одно из мест бубну можно 8-мью
причём эти места можно поменять местами, значит выбрать пары бубен можно
К ним можно приложить НЕ БУБНУ 27-мью НЕ 34!).
Всего с одной НЕ-БУБНОЙ на одном из мест мест.
ТРИ БУБНЫ
Вынуть на одно из мест бубну можно 9-тью
вынуть на ещё одно из мест бубну можно 8-тью
вынуть на последнее из мест бубну можно 7-мью
И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше:
Всего со всеми бубнами.
Всего подходящих вариантов : 9*4*27 + 3*4*7 = 3*4*(3*27+7) = 3*4*88
*** было бы ошибкой смешивать случай с двумя и с тремя бубнами, считая третью карту не одной из 27, а сразу одной из 34, так как при этом получилось бы выражение 3*4*102, вместо 3*4*88, поскольку в этом случае были бы посчитаны трижды такие неупорядоченные тройки, как, например «Т♦ К♦ Д♦», когда Т♦ выбран из 34, либо K♦ выбран из 34, либо Д♦, а две остальные из девяти и восьми.
Итоговая вероятность ;
О т в е т:
Пусть цена мяча х руб.
Тогда у Саши было (х-50) руб., у Миши (х-60) руб.
Общая сумма имеющихся денег у мальчиков:
(х-50) + (х-60)
Зная , что после покупки мяча, у мальчиков осталось 40 рублей, составим уравнение.
х = (х-50) +(х-60) -40
II этап. Работа с математической моделью.
Т.е. решение уравнения.
х = х-50+х-60-40
х=2х-150
х-2х=-150
-х=-150
х=150
III этап. Оценка результата.
Если 150 руб. стоил мяч , то у Саши было (150-50) =100 руб. ,
а у Миши (150-60) = 90 руб. , после покупки мяча у них осталось (100+90)-150 = 40 руб. ответ удовлетворяет всем условиям задачи.
ответ: 150 рублей стоил мяч.