1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Чертеж беру ваш.
1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Доказано.
Нам известно, что 2²⁰¹⁹ * 5²⁰¹⁹ = 10²⁰¹⁹, а 10²⁰¹⁹ точно имеет 2020 цифр.
Пусть p - такое число, что 10^p < 2²⁰¹⁹ < 10^(p+1), а q - аналогичное число для 5²⁰¹⁹.
Представим 2²⁰¹⁹ в виде 10^p + s, а 5²⁰¹⁹ - в виде 10^q + t, тогда:
10²⁰¹⁹ = (10^p + s) * (10^q + t)
10²⁰¹⁹ = 10^(p+q) + t * 10^p + s * 10^q + s * t
p + q < 2019 (иначе 10^(p+q) уже равно 10²⁰¹⁹)
p + q > 2017, докажем это. Пусть это не так, тогда:
t * 10^p + s * 10^q + s * t ≥ 10²⁰¹⁹ - 10²⁰¹⁷ ≥ 99 * 10^(p + q)
s < 9 * 10^p (по выбору p)
t < 9 * 10^q (по выбору q)
s * t < 81 * 10^(p+q)
s * 10^q < 9 * 10^(p+q)
t * 10^p < 9 * 10^(p+q)
t * 10^p + s * 10^q + s * t < 99 * 10^(p+q)
Противоречие. Значит, p + q > 2017. Значит, p + q = 2018. Так как x равен p + 1, y равен q + 1 (по выбору p и q), то x + y = p + q + 2 = 2020.
ответ: 2020.