Даны точки P(-1,2,1); Q(3 ,-4 , 2) и плоскость 2x + 4y - 3z + 5=0.
Находим координаты вектора m, проходящего через точки P и Q.
m = (3-(-1)=4; -4-2=-6; 2-1=1) = (4; -6; 1).
Второй вектор - это нормальный вектор заданной плоскости. Он будет лежать в искомой плоскости. Его координаты берём из уравнения:
n = (2; 4; -3).
Теперь берём точку P(-1,2,1) и 2 вектора, которые будут лежать в искомой плоскости: m = (4; -6; 1) и n = (2; 4; -3).
Плоскость, проходящая через точку М0(х0;у0;z0) и параллельная данным (непараллельным между собой) прямым K1 и K2 (или векторам a1 и а2), представляется уравнением:
ответ: 2*x-2*y-z-3=0.
Объяснение:
Уравнение плоскости, проходящей через точки M1(x1;y1;z1) и M2(x2;y2;z2) и перпендикулярной плоскости, заданной уравнением A*x+B*y+C*z+D=0, имеет вид:
x-x1 y-y1 z-z1
x2-x1 y2-y1 z2-z1 =0 .
A B C
В наше случае в качестве точки М1 возьмём точку P, а в качестве точки М2 - точку Q. Тогда искомое уравнение примет вид:
x-2 y-1 z+1
1 -1 4 =0
3 4 -2
Раскрывая данный определитель по первой строке, получим:
-14*x+14*y+7*z+21=0, или 2*x-2*y-z-3=0.
Даны точки P(-1,2,1); Q(3 ,-4 , 2) и плоскость 2x + 4y - 3z + 5=0.
Находим координаты вектора m, проходящего через точки P и Q.
m = (3-(-1)=4; -4-2=-6; 2-1=1) = (4; -6; 1).
Второй вектор - это нормальный вектор заданной плоскости. Он будет лежать в искомой плоскости. Его координаты берём из уравнения:
n = (2; 4; -3).
Теперь берём точку P(-1,2,1) и 2 вектора, которые будут лежать в искомой плоскости: m = (4; -6; 1) и n = (2; 4; -3).
Плоскость, проходящая через точку М0(х0;у0;z0) и параллельная данным (непараллельным между собой) прямым K1 и K2 (или векторам a1 и а2), представляется уравнением:
x-x0 y-y0 z-z0
nx ny nz
mx my mz = 0.
Подставляем данные:
x+1 y-2 z-1
2 4 -3
4 -6 1 = 0.
Решив эту матрицу, получаем -14x - 14y - 14z + 42 = 0.
Сократив на -14, получаем уравнение искомой плоскости:
x + y + z - 3 = 0.