Прикажем одному солдату выйти из строя! Тогда там останется некоторое количество, которое делится без остатка на 4, одновременно делится без остатка на 5 и одновременно делится без остатка на 6, а это означает, что оно должно делиться на наименьшее общее кратное
Значит искомое число солдат: где – некоторое целое число.
П е р в ы й . п у т ь . р е ш е н и я :
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда и – делится на а значит подходит !
И это минимальное число солдат:
В т о р о й . п у т ь . р е ш е н и я :
Как мы выяснили где – некоторое целое число.
Преобразуем где – некоторое целое число.
И это число, с другой стороны кратно семи, т.е. где и – некоторые целые числа.
Итак: ;
;
– правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:
где и – некоторые целые числа.
где и – некоторые целые числа.
что возможно при самом малом а значит:
где ;
;
Т р е т и й . п у т ь . р е ш е н и я :
Как мы выяснили где – некоторое целое число.
Преобразуем где – некоторое целое число.
И это число, с другой стороны кратно семи, т.е. где и – некоторые целые числа.
Итак: ;
;
;
– правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:
1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Значит искомое число солдат: где – некоторое целое число.
П е р в ы й . п у т ь . р е ш е н и я :
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда и – делится на а значит подходит !
И это минимальное число солдат:
В т о р о й . п у т ь . р е ш е н и я :
Как мы выяснили где – некоторое целое число.
Преобразуем где – некоторое целое число.
И это число, с другой стороны кратно семи, т.е. где и – некоторые целые числа.
Итак: ;
;
– правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:
где и – некоторые целые числа.
где и – некоторые целые числа.
что возможно при самом малом а значит:
где ;
;
Т р е т и й . п у т ь . р е ш е н и я :
Как мы выяснили где – некоторое целое число.
Преобразуем где – некоторое целое число.
И это число, с другой стороны кратно семи, т.е. где и – некоторые целые числа.
Итак: ;
;
;
– правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:
где и – некоторые целые числа.
где и – некоторые целые числа.
что возможно при самом малом а значит:
где ;
;
О т в е т :
Чертеж беру ваш.
1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Доказано.