Количество клеток на доске 8×8 равно 64. Если удалить 1 клетку останется 63 клеток. Поэтому условие означает, что на доску 8×8 уложена 21 прямоугольников 1×3 (или 3×1).
Нам нужно вырезать клетку из доски 8×8 так, чтобы остаток можно было покрыть прямоугольников 1×3 (или 3×1).
Раскрасим доску 8×8 в 3 цвета вдоль главной диагонали так, чтобы любой прямоугольник занимал по клетке каждого цвета (см. рисунок-1). Клеток с номерами 1 – 22 штуки, с номером 2 – 21 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 1 (чтобы всех цветов осталось поровну). Такие клетки закрашены зелёным цветом (см. рисунок-2).
Раскрасим теперь доску в три цвета вдоль других диагоналей (см. рисунок-3). Клеток с номерами 1 – 21 штуки, с номером 2 – 22 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 2 (чтобы всех цветов осталось поровну). Такие клетки закрашены голубым цветом (см. рисунок-4).
Таким образом, мы можем вырезать одну из тех клеток, которая в первой раскраске имеют цвет 1, а во второй 2. Таких клеток только 4 (см. рисунок 5), которые закрашены красным цветом.
На рисунке-6 показан пример заполнения доски прямоугольниками 1×3 (или 3×1) с одной клеткой красного цвета. Примеры для остальных клеток можно получит поворотом доски.
Пошаговое объяснение:
1. Меркурий (слайд 5)
Как сложить два отрицательных числа?
2. Венера (слайд 6)
Как сложить два числа с разными знаками?
3. Земля (слайд 7)
Как из данного числа вычесть другое?
4. Марс (слайд 8)
Как умножить два отрицательных числа?
5. Юпитер (слайд 9)
Дайте словесную формулировку аb = bа
6. Сатурн (слайд 10)
Сформулируйте правило деление чисел, имеющих разные знаки.
7. Уран (слайд 11)
Дайте словесную формулировку (а+b)+с = а+(b+с)
8. Нептун (слайд 12)
Какие числа называют рациональными?
9. Плутон (слайд 13).
Дайте словесную формулировку (а+b)с = ас + bс.
Количество клеток на доске 8×8 равно 64. Если удалить 1 клетку останется 63 клеток. Поэтому условие означает, что на доску 8×8 уложена 21 прямоугольников 1×3 (или 3×1).
Нам нужно вырезать клетку из доски 8×8 так, чтобы остаток можно было покрыть прямоугольников 1×3 (или 3×1).
Раскрасим доску 8×8 в 3 цвета вдоль главной диагонали так, чтобы любой прямоугольник занимал по клетке каждого цвета (см. рисунок-1). Клеток с номерами 1 – 22 штуки, с номером 2 – 21 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 1 (чтобы всех цветов осталось поровну). Такие клетки закрашены зелёным цветом (см. рисунок-2).
Раскрасим теперь доску в три цвета вдоль других диагоналей (см. рисунок-3). Клеток с номерами 1 – 21 штуки, с номером 2 – 22 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 2 (чтобы всех цветов осталось поровну). Такие клетки закрашены голубым цветом (см. рисунок-4).
Таким образом, мы можем вырезать одну из тех клеток, которая в первой раскраске имеют цвет 1, а во второй 2. Таких клеток только 4 (см. рисунок 5), которые закрашены красным цветом.
На рисунке-6 показан пример заполнения доски прямоугольниками 1×3 (или 3×1) с одной клеткой красного цвета. Примеры для остальных клеток можно получит поворотом доски.