Так как квадрат состоит из 2*2=4 клеток, а прямоугольник состоит из 1*3=3 клеток, и числа 4 и 3 взаимно простые, нарисуем прямоугольник с наименьшим количеством клеток 12, который можно покрыть тремя не пересекающимися квадратами либо четырьмя не пересекающимися прямоугольниками (см. приложение).
Есть 3 квадрата. Чтобы в них было поровну фигур, в нарисованном прямоугольнике может стоять :
3*0 = 0 фигур;
3*1 = 3 фигуры;
3*2 = 6 фигур;
3*3 = 9 фигур;
3*4 = 12 фигур.
Есть 4 прямоугольника. Чтобы в них было поровну фигур, в нарисованном прямоугольнике может стоять :
4*0 = 0 фигур;
4*1 = 4 фигуры;
4*2 = 8 фигур;
4*3 = 12 фигур.
Одинаковое количество фигур на данном прямоугольнике либо 0, либо 12 по количеству клеток, т.е. ВСЕ клетки либо пустые, либо на ВСЕХ клетках стоят фигуры.
Так как шахматная доска имеет размерность 8*8, а нарисованный прямоугольник имеет меньшие размеры 6*2, то доску можно покрыть этими прямоугольниками любым естественно, с перекрытием). Пустых клеток не останется.
Так как на шахматной доске 8*8 = 64 клетки, то для выполнения условия задачи на доске должно стоять 0 фигур или 64 фигуры.
1.фигура 4 буквы - ромб
2.Компонент умножения 9 букв - множитель
3.Ступень,к которой относится действие возведения в степень 6 букв- первая
6.Мера длинны 8 букв километр
7.Действие 8 букв - сложение
8.Мера времени 3 буквы - час
9.Мера вместимости 4 буквы - литр
10.Компонент возведения в степень 10 букв
11.Время года когда температура обычно выще нуля 4 буквы - лето
12.Число больше нуля 13 букв - положительное
15.знак дроби - дробная ...5 букв черта
18.День недели 7 букв вторник
20.Знак 4 буквы плюс
21.Действие 7 букв деление
24.Число меньше нуля 13 букв отрицательное
25.Мера массы 5 букв тонна
27.Разряд числа 5 букв сотня
все что смогла. удачи :)
Так как квадрат состоит из 2*2=4 клеток, а прямоугольник состоит из 1*3=3 клеток, и числа 4 и 3 взаимно простые, нарисуем прямоугольник с наименьшим количеством клеток 12, который можно покрыть тремя не пересекающимися квадратами либо четырьмя не пересекающимися прямоугольниками (см. приложение).
Есть 3 квадрата. Чтобы в них было поровну фигур, в нарисованном прямоугольнике может стоять :
3*0 = 0 фигур;
3*1 = 3 фигуры;
3*2 = 6 фигур;
3*3 = 9 фигур;
3*4 = 12 фигур.
Есть 4 прямоугольника. Чтобы в них было поровну фигур, в нарисованном прямоугольнике может стоять :
4*0 = 0 фигур;
4*1 = 4 фигуры;
4*2 = 8 фигур;
4*3 = 12 фигур.
Одинаковое количество фигур на данном прямоугольнике либо 0, либо 12 по количеству клеток, т.е. ВСЕ клетки либо пустые, либо на ВСЕХ клетках стоят фигуры.
Так как шахматная доска имеет размерность 8*8, а нарисованный прямоугольник имеет меньшие размеры 6*2, то доску можно покрыть этими прямоугольниками любым естественно, с перекрытием). Пустых клеток не останется.
Так как на шахматной доске 8*8 = 64 клетки, то для выполнения условия задачи на доске должно стоять 0 фигур или 64 фигуры.