В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
IlonaBilash24
IlonaBilash24
27.01.2020 15:28 •  Математика

Решите с пояснениями (для человека, весьма слабо разбирающегося в логарифмах)

Показать ответ
Ответ:
slender24
slender24
14.07.2020 19:13

ОДЗ:

\left \{ {{3-\frac{3}{2x+3}0 } \atop {2+\frac{1}{x+1}0 }} \right. \\ \\ \left \{ {{\frac{6x+9-3}{2x+3}0 } \atop {\frac{2x+2+1}{x+1}0 }} \right. \\ \\ \left \{ {{\frac{6(x+1)}{2x+3}0 } \atop {\frac{2x+3}{x+1}0 }} \right.

Метод интервалов:

__+__ (-3/2) ___ (-1) __+___

x∈(-∞;-3/2) U (-1;+∞)

Свойства логарифма.

Логарифм степени

n·log_(6)b=log_(6)bⁿ

b>0

Логарифм произведения

log_(6) a + log_(6)b=log_(6)a·b

a>0; b>0

Уравнение принимает вид:

log₆(6(x+1)/(2x+3))⁴=log₆((2x+3)/(x+1))⁵·6⁴

Логарифмы равны, значит и выражения под логарифмами равны.

(6(x+1)/(2x+3))⁴=((2x+3)/(x+1))⁵·6⁴

Сокращаем на 6⁴

(х+1)⁴/(2х+3)⁴=(2х+3)⁵/(х+1)⁵

((x+1)/(2x+3))⁹=1

(x+1)/(2x+3)=1

x+1=2x+3

x=-2∈(-∞;-3/2) U (-1;+∞)

О т в е т. -2

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота