Пошаговое объяснение:
перепишем уравнение заданной прямой в виде y = kx+b
2y+x +3 = 0
y = -0.5x -1.5
отсюда мы найдем коэффициент наклона нашей нормали. т.к. нормаль должна быть ║ заданной прямой, то и угловые коэффициенты у них должны быть равными.
т.о. угловой коэффициент наклона нормали = -0,5
уравнение нормали
теперь надо найти точку кривой, в которой
отсюда получим х = ± 1
т.е. у нас есть две точки с абсциссами х=1 и х = -1, принадлежащие кривой у= х -1/х, удовлетворяющие нашим условиям построения нормали
две точки потому, что график функции у = х -1/х состоит из двух кривых
теперь для нормали в виде у = kx+b у нас есть x. найдем у и b
у(1) = 0 0=-0,5*1+b b= 0.5
уравнение нормали у = -0,5х +0,5
у(-1) = 0 0= -0,5*(-1)+b b = -0.5
уравнение нормали у = -0,5х -0,5
на графике
красным у = х -1/х
зеленым 2у+х+3 = 0
фиолетовым и зеленым - две нормали. специально их укоротила, чтобы было видно к какой дуге кривой относится каждая нормаль
Олимпийское движение постоянно совершенствуется, со временем
приобретая положительные тенденции своего развития. МОК (Международный
Олимпийский комитет) уделяет немало внимания проблемам Игр и по мере сил
старается их решить. Это, в частности, касается организации Юношеских
Олимпийских игр. Первые летние Игры начали проводить только с 2010 года, а
зимние – с 2012. Предшественниками юношеской Олимпиады стали всемирные
соревнования, в которых принимали участие спортсмены-юниоры, возраст
которых варьировал от 14 до 18 лет. Целью организации подобных
мероприятий стало стремление вовлечь молодежь в официальное Олимпийское
движение юниорам реализовать таланты, а также найти сильных
спортсменов, которые будут достойны представлять свои страны на
последующих Играх.
Прекрасным примером достойного участника юношеской Олимпиады
является Никита Владимирович Нагорный, российский гимнаст, рожденный 12 февраля 1997 года в Ростове-на-Дону. Никита в свои девятнадцать является
трехкратным чемпионом, серебряным и бронзовым призѐром юношеских
Олимпийских игр 2014 года, чемпионом Европы 2015 года в опорном прыжке,
чемпионом Европы 2016 в командном первенстве и в вольных упражнениях,
серебряным призѐром летних Олимпийских игр 2016 года. Он - заслуженный
мастер спорта России, а также мастер спорта международного класса, а ко
всему еще и младший лейтенант Вооруженных Сил Российской Федерации.
За высокие спортивные достижения, за волю к победе и
целеустремленность, Никите вручили медаль ордена «За заслуги перед Отечеством».
Другой положительной тенденцией развития Олимпийского движения в
лучшую сторону стало постепенное вовлечение в него женщин, а также
исправление гендерной асимметрии. Вплоть до 1981 года в МОК не входила ни
одна женщина, поскольку решение о составе Комитета принимали его
участники, т.е. мужчины.
Одним из примеров таких личностей является Ольга Геннадьевна
Вилухина, российская биатлонистка. Она занималась лыжными гонками до
1998 года, но с 2004 года перешла на биатлон по совету тренера. Чемпионат
мира по биатлону среди юниоров 2006 года стал для нее первым в карьере. В
индивидуальной гонке она заняла лишь 28 место.
На сегодняшний день Ольга является заслуженным мастером спорта
России, двукратным серебряным призером Олимпийских игр 2014 года (в
спринте и женской эстафете), бронзовым призером чемпионата мира 2012 года,
трехкратной чемпионкой России.
Пошаговое объяснение:
перепишем уравнение заданной прямой в виде y = kx+b
2y+x +3 = 0
y = -0.5x -1.5
отсюда мы найдем коэффициент наклона нашей нормали. т.к. нормаль должна быть ║ заданной прямой, то и угловые коэффициенты у них должны быть равными.
т.о. угловой коэффициент наклона нормали = -0,5
уравнение нормали
теперь надо найти точку кривой, в которой
отсюда получим х = ± 1
т.е. у нас есть две точки с абсциссами х=1 и х = -1, принадлежащие кривой у= х -1/х, удовлетворяющие нашим условиям построения нормали
две точки потому, что график функции у = х -1/х состоит из двух кривых
теперь для нормали в виде у = kx+b у нас есть x. найдем у и b
у(1) = 0 0=-0,5*1+b b= 0.5
уравнение нормали у = -0,5х +0,5
у(-1) = 0 0= -0,5*(-1)+b b = -0.5
уравнение нормали у = -0,5х -0,5
на графике
красным у = х -1/х
зеленым 2у+х+3 = 0
фиолетовым и зеленым - две нормали. специально их укоротила, чтобы было видно к какой дуге кривой относится каждая нормаль
Олимпийское движение постоянно совершенствуется, со временем
приобретая положительные тенденции своего развития. МОК (Международный
Олимпийский комитет) уделяет немало внимания проблемам Игр и по мере сил
старается их решить. Это, в частности, касается организации Юношеских
Олимпийских игр. Первые летние Игры начали проводить только с 2010 года, а
зимние – с 2012. Предшественниками юношеской Олимпиады стали всемирные
соревнования, в которых принимали участие спортсмены-юниоры, возраст
которых варьировал от 14 до 18 лет. Целью организации подобных
мероприятий стало стремление вовлечь молодежь в официальное Олимпийское
движение юниорам реализовать таланты, а также найти сильных
спортсменов, которые будут достойны представлять свои страны на
последующих Играх.
Прекрасным примером достойного участника юношеской Олимпиады
является Никита Владимирович Нагорный, российский гимнаст, рожденный 12 февраля 1997 года в Ростове-на-Дону. Никита в свои девятнадцать является
трехкратным чемпионом, серебряным и бронзовым призѐром юношеских
Олимпийских игр 2014 года, чемпионом Европы 2015 года в опорном прыжке,
чемпионом Европы 2016 в командном первенстве и в вольных упражнениях,
серебряным призѐром летних Олимпийских игр 2016 года. Он - заслуженный
мастер спорта России, а также мастер спорта международного класса, а ко
всему еще и младший лейтенант Вооруженных Сил Российской Федерации.
За высокие спортивные достижения, за волю к победе и
целеустремленность, Никите вручили медаль ордена «За заслуги перед Отечеством».
Другой положительной тенденцией развития Олимпийского движения в
лучшую сторону стало постепенное вовлечение в него женщин, а также
исправление гендерной асимметрии. Вплоть до 1981 года в МОК не входила ни
одна женщина, поскольку решение о составе Комитета принимали его
участники, т.е. мужчины.
Одним из примеров таких личностей является Ольга Геннадьевна
Вилухина, российская биатлонистка. Она занималась лыжными гонками до
1998 года, но с 2004 года перешла на биатлон по совету тренера. Чемпионат
мира по биатлону среди юниоров 2006 года стал для нее первым в карьере. В
индивидуальной гонке она заняла лишь 28 место.
На сегодняшний день Ольга является заслуженным мастером спорта
России, двукратным серебряным призером Олимпийских игр 2014 года (в
спринте и женской эстафете), бронзовым призером чемпионата мира 2012 года,
трехкратной чемпионкой России.