. Условие, что выражение равно единице, можно записать так:
(100 + n)k(100 - n)l = 100k + l. Так как правая часть четна, то и левая часть должна быть четна, значит, n четно. Аналогично, левая часть делится на 5, значит, n делится на 5. Значит, n делится на 10. Можно перебрать все 9 возможных вариантов: n = 10, 20, ..., 90. Например, если n = 10, то левая часть делится на 11, что невозможно.
Можно обойтись без перебора: пусть n не делится на 25. Тогда числа 100 - n и 100 + n тоже не делятся на 25. Значит, пятерка входит в разложение левой части на простые множители ровно k + l раз. Но она входит в разложение правой части 2(k + l ) раз -- противоречие. Итак, n делится на 25. Аналогично доказывается, что n делится на 4. Но тогда n делится на 100, что невозможно, ибо 0 < n < 100.
. Условие, что выражение равно единице, можно записать так:
(100 + n)k(100 - n)l = 100k + l. Так как правая часть четна, то и левая часть должна быть четна, значит, n четно. Аналогично, левая часть делится на 5, значит, n делится на 5. Значит, n делится на 10. Можно перебрать все 9 возможных вариантов: n = 10, 20, ..., 90. Например, если n = 10, то левая часть делится на 11, что невозможно.Можно обойтись без перебора: пусть n не делится на 25. Тогда числа 100 - n и 100 + n тоже не делятся на 25. Значит, пятерка входит в разложение левой части на простые множители ровно k + l раз. Но она входит в разложение правой части 2(k + l ) раз -- противоречие. Итак, n делится на 25. Аналогично доказывается, что n делится на 4. Но тогда n делится на 100, что невозможно, ибо 0 < n < 100.
Равенство - это когда два числа равны.
Неравенство - одно число больше другого.
Из данных чисел составим следующие верные равенства:
1) 13 = 8 + 5
13=13
2)13 - 8 = 5
5=5
3) 13 - 5 = 8
8=8
4) 15 = 9 + 6
15=15
5) 15 - 9 = 6
6 = 6
6) 15 - 6 = 9
9 = 9
Из данных чисел составим следующие верные неравенства:
6 + 5 < 13
6 + 5 < 15
7 + 5 < 13
7 + 5 < 15
8 + 9 > 15
8 + 9 > 13
8 + 9 > 15 - 13
8 + 9 > 15 - 9
8 + 7 > 13
6 + 8 > 13
6 + 8 > 13 - 5
6 + 8 > 13 - 9
Пошаговое объяснение: