Так как в лифт мы заходим на первом этаже, то максимальный подъем при всех работающих кнопках возможен на 99 - 1 = 98 этажей.
Так как кнопки работают на подъем только на 3 этажа (странный лифт..))),
а возможность спуска на 6 этажей ничего принципиального в характере подъема не меняет, то максимальная высота подъема в таком режиме составит 96 этажей:
Так как в лифт мы заходим на первом этаже, то максимальный подъем при всех работающих кнопках возможен на 99 - 1 = 98 этажей.
Так как кнопки работают на подъем только на 3 этажа (странный лифт..))),
а возможность спуска на 6 этажей ничего принципиального в характере подъема не меняет, то максимальная высота подъема в таком режиме составит 96 этажей:
98 : 3 = 32 2/3 - нажатий на кнопку подъема придется сделать.
Очевидно, что 2/3 нажатия на кнопку подъема произвести не удастся..))
Тогда подъем возможен на 96 этажей. Учитывая, что лифт находился на первом, то максимально в таком лифте можно доехать до 97 этажа.
ответ: на 97-й этаж
Даны функции: 1) y=(1/4)x-7 , 2) y=x³-1 , 3) y=3/(x-4).
Находим им обратные:
1) 4у = х - 28, х = 4у + 28. Меняем х на у: у = 4х + 28.
График этой функции - прямая линия. D = E = R.
2) x³ = y + 1, x = ∛(y + 1). Меняем х на у: у = ∛(х + 1) = (x + 1)^(1/3).
Это степенная функция. График её - половина кубической параболы относительно оси Ох, начало в точке х = -1.
1.D(f)=[-1; +∞);
2.E(f)=[0; +∞);
3. не является ни чётной, ни нечётной;
4. возрастает при x ∈ [-1; +∞);
5. не имеет наибольшего значения, ymin.=0;
6. не ограничена сверху, ограничена снизу;
7. выпукла вверх;
8. непрерывна.
3) у = 3/(х - 4), ху - 4у = 3, х = (3 + 4у)/у.
Меняем х на у: у = (3 + 4х)/х = (3/х) + 4.
Это функция обратной пропорциональности.
График её = гипербола, сдвинутая по оси Оу на 4 единицы вверх.
1. Область определения функции состоит из всех чисел, кроме х = 0.
2. у > 0 при х < (-3/4), x > 0 ; у<0 при (-3/4) < х < 0.
3. Функция убывает на промежутках (-∞, 0) и (0, +∞).
4. Функция не ограничена ни снизу, ни сверху, E(f)=(-∞; 4) ∪ (4; +∞).
5. Ни наименьшего, ни наибольшего значений у функции
6. Функция непрерывна на промежутках (-∞, 0) и (0, +∞) и претерпевает разрыв при х = 0.