Итак, для ограничения по целым степеням не более 27 по модулю, вычислимыми оказались результаты ~957 млн выводов и среди них 356 являются выводами числа 5479 и ни один вывод (а соответственно ни один вывод с операциями сложения, вычитания, конкатенации, умножения и деления, а также некоторые выводы с этими же операциями и некоторыми целыми степенями) не является выводом числа 10958. В чем его особенность?
Призраки и тени
Для задачи, аналогичной задаче Танежи в восходящем порядке, но с начальными векторами длины 8, такими как $(1, 2, ... , 8)$ и $(2, 3, ... , 9)$ количество вариантов меньше, а с иррациональными, комплексными и длинными целыми значениями элементов векторов (1) — (7) справляются оптимизированные алгоритмы Вольфрам Математики. Так, достоверно известно, что ни один вывод в $(1, 2, ... , 9)$, имеющий на 8-ой итерации оператор конкатенации, сложения или вычитания не может привести к значению 10958. Какие возможности для дальнейшего решения это даёт?
Число 10958 является полупростым. И если последняя итерация вывода не содержит сложение, вычитание и конкатенацию, то один из операндов на 8-ой итерации будет гарантировано включать 5479 в некоторой степени, за исключением двух случаев:
когда операнды кратны некоторым комплексно-сопряжённым
когда один из операндов содержит логарифм, основание или показатель которого кратны 5479
Мы имеем прямоугольный треугольник АВС, с прямым углом С, где АС, ВС - катеты, АВ - гипотенуза. Также мы имеем описанную окружность, радиус которой мы можем найти, как половину гипотенузы, для начала найдем гипотенузу по теореме Пифагора:
AB^2 = AC^2 + BC^2;
AB^2 = 6^2 + 8^2;
AB^2 = 36 + 64;
AB^2 = 100;
AB = 10 см.
Так как мы нашли длину гипотенузы, мы можем сразу найти радиус описанной окружности, как:
Итак, для ограничения по целым степеням не более 27 по модулю, вычислимыми оказались результаты ~957 млн выводов и среди них 356 являются выводами числа 5479 и ни один вывод (а соответственно ни один вывод с операциями сложения, вычитания, конкатенации, умножения и деления, а также некоторые выводы с этими же операциями и некоторыми целыми степенями) не является выводом числа 10958. В чем его особенность?
Призраки и тени
Для задачи, аналогичной задаче Танежи в восходящем порядке, но с начальными векторами длины 8, такими как $(1, 2, ... , 8)$ и $(2, 3, ... , 9)$ количество вариантов меньше, а с иррациональными, комплексными и длинными целыми значениями элементов векторов (1) — (7) справляются оптимизированные алгоритмы Вольфрам Математики. Так, достоверно известно, что ни один вывод в $(1, 2, ... , 9)$, имеющий на 8-ой итерации оператор конкатенации, сложения или вычитания не может привести к значению 10958. Какие возможности для дальнейшего решения это даёт?
Число 10958 является полупростым. И если последняя итерация вывода не содержит сложение, вычитание и конкатенацию, то один из операндов на 8-ой итерации будет гарантировано включать 5479 в некоторой степени, за исключением двух случаев:
когда операнды кратны некоторым комплексно-сопряжённым
когда один из операндов содержит логарифм, основание или показатель которого кратны 5479
Пошаговое объяснение:
Мы имеем прямоугольный треугольник АВС, с прямым углом С, где АС, ВС - катеты, АВ - гипотенуза. Также мы имеем описанную окружность, радиус которой мы можем найти, как половину гипотенузы, для начала найдем гипотенузу по теореме Пифагора:
AB^2 = AC^2 + BC^2;
AB^2 = 6^2 + 8^2;
AB^2 = 36 + 64;
AB^2 = 100;
AB = 10 см.
Так как мы нашли длину гипотенузы, мы можем сразу найти радиус описанной окружности, как:
R = AB / 2;
R = 10 / 2;
R = 5 см.
ответ: радиус описанной окружности равен 5 см.