Машини трьох видів і вони мають частки від загальної кількості, складемо рівняння і вирахуємо ск.машин ,незалежно від марки, припадає на одну частку., маємо: 4х+5х+3х=96 12х=96 х=8 це одинична частка авто на весь загал. Тоді легко знайдемо кількість авто кожної марки: 4*8=32 Волга
5*8=40 Жигулі
5*8=24 Москвич
3) (2,6*0,3-2:(-1.9) помножимо , поділимо і потім віднімемо 2,6*0,3=0,78
Обозначим a+b=x, ab=y. D=x^2-4y. Тогда числа a и b являются решениями квадратного уравнения t^2-xt+y=0; в частности, D>0. Исходное уравнение переписывается в виде x^3-3xy=2021(y+4). Легко видеть, что это уравнение - линейное от у, и его решение - у=(x^3-8084)/(3x+2021). Раз число у целое, то и число 27D=27(x^2-4у)=-9 x^2 + 24252 x + 33019494116/(3 x + 2021) - 16337764 тоже целое и неотрицательное. Заметим, что данная функция отрицательна при х>10^5, а также число 33019494116=2^2×7×43×47×709×823 должно делиться на 3х+2021. Рассмотрим возможные значения выражения 3х+2021. Они имеют вид 3k+2, а значит, они должны делиться на ровно одно или три числа из набора 2, 2, 47 (остатки при делении на 3). Заметим, что 3х+2021<303000. То есть, нам надо перебрать делители данного числа, делящиеся на 188 и не большие 303000 - а это суть делители (умноженные на 188) числа
7×43×709×823, не большие 303000/188<2000. А ещё нам надо перебрать делители числа 7×43×709×823 (которые уже не больше 303000/47<8000) и умножить их на 47 (случай одного делителя вида 3k+2), и делители того же числа, не превышающие 160000 (их следует умножить на 2). Далее для каждого подошедшего делителя решить уравнение 3х+2021=n. Полученный список чисел - суть множество, содержащее всевозможные значения х; осталось всего лишь перебрать их (их не очень много) и определить, какие х приводят к решению задачи.
32, 40 ,24
Пошаговое объяснение:
Машини трьох видів і вони мають частки від загальної кількості, складемо рівняння і вирахуємо ск.машин ,незалежно від марки, припадає на одну частку., маємо: 4х+5х+3х=96 12х=96 х=8 це одинична частка авто на весь загал. Тоді легко знайдемо кількість авто кожної марки: 4*8=32 Волга
5*8=40 Жигулі
5*8=24 Москвич
3) (2,6*0,3-2:(-1.9) помножимо , поділимо і потім віднімемо 2,6*0,3=0,78
2/-1,9= -1,05 0.78-(-1,05)=1,83 відповідь 1,83
1)0.3(4-5х)=-0,1(9х-1)+2=-1,5х+0,9х=0,1+2-1,2=0,6х=0,9 х=1,5
відповідь х=1,5
Пошаговое объяснение:
Обозначим a+b=x, ab=y. D=x^2-4y. Тогда числа a и b являются решениями квадратного уравнения t^2-xt+y=0; в частности, D>0. Исходное уравнение переписывается в виде x^3-3xy=2021(y+4). Легко видеть, что это уравнение - линейное от у, и его решение - у=(x^3-8084)/(3x+2021). Раз число у целое, то и число 27D=27(x^2-4у)=-9 x^2 + 24252 x + 33019494116/(3 x + 2021) - 16337764 тоже целое и неотрицательное. Заметим, что данная функция отрицательна при х>10^5, а также число 33019494116=2^2×7×43×47×709×823 должно делиться на 3х+2021. Рассмотрим возможные значения выражения 3х+2021. Они имеют вид 3k+2, а значит, они должны делиться на ровно одно или три числа из набора 2, 2, 47 (остатки при делении на 3). Заметим, что 3х+2021<303000. То есть, нам надо перебрать делители данного числа, делящиеся на 188 и не большие 303000 - а это суть делители (умноженные на 188) числа
7×43×709×823, не большие 303000/188<2000. А ещё нам надо перебрать делители числа 7×43×709×823 (которые уже не больше 303000/47<8000) и умножить их на 47 (случай одного делителя вида 3k+2), и делители того же числа, не превышающие 160000 (их следует умножить на 2). Далее для каждого подошедшего делителя решить уравнение 3х+2021=n. Полученный список чисел - суть множество, содержащее всевозможные значения х; осталось всего лишь перебрать их (их не очень много) и определить, какие х приводят к решению задачи.