Решите уравнение: cos2x – sin x cos x –2sin2 x = 0
Решите неравенство:
4x - 9 ∙ 2x +18 < 0
Найдите наибольшее и наименьшее значения функции на отрезке:
f(x) = x3 +6x2 + 9x - 8; [-4;3]
Решите уравнение:
log22 x - 4 log 2 x -12 = 0
Вычислите площадь фигуры, ограниченной линиями:
y = x2 - 4x - 6 и y = - 1
6. В треугольной призме стороны основания равны 35, 13 и 24 см, а
боковое ребро равно 12 см. Найдите объем призмы.
МОЖНО ДО 5-ГО ЗАДАНИЯ
ЖЕЛАТЕЛЬНО НАПИСАТЬ ВСЕ НА ЛИСТОЧКЕ
a·b= -24
Пошаговое объяснение:
Рассмотрим точку графика y=f(x) с абсциссой (x₀;f(x₀)). Симметричная ей относительно оси ординат Oy точка плоскости (-x₀;f(x₀)) принадлежит графику функции y=f(-x). Это следует из того, что координаты этой точки удовлетворяют уравнению y=f(-x) , так как
f(x₀ )=f(-(-x₀)).
Значит, при симметрии точки графика функции y=f(x) получится точка графика функции y=f(-x).
Отсюда, график функции, симметричной к графику функции y=5x+6 относительно оси ординат получается путём замены x на -x, то есть нужная функция имеет вид:
y=5(-х)+6 или y= -5x+6
Сравнивая коэффициенты этой функции с y=(a-1)x+b получим:
a-1=-5 или a=-4, b=6
a·b= (-4)·6= -24
a·b= -24
Пошаговое объяснение:
Рассмотрим точку графика y=f(x) с абсциссой (x₀;f(x₀)). Симметричная ей относительно оси ординат Oy точка плоскости (-x₀;f(x₀)) принадлежит графику функции y=f(-x). Это следует из того, что координаты этой точки удовлетворяют уравнению y=f(-x) , так как
f(x₀ )=f(-(-x₀)).
Значит, при симметрии точки графика функции y=f(x) получится точка графика функции y=f(-x).
Отсюда, график функции, симметричной к графику функции y=5x+6 относительно оси ординат получается путём замены x на -x, то есть нужная функция имеет вид:
y=5(-х)+6 или y= -5x+6
Сравнивая коэффициенты этой функции с y=(a-1)x+b получим:
a-1=-5 или a=-4, b=6
a·b= (-4)·6= -24