Для начала я дам Вам весы и девять монет (каждому ученику) Всем хватило? Хорошо. Теперь повторяйте мои действия. Сначала разделим монеты на три группы. В каждой-по три монете. Одну группу оставляем на столе, вторую кладём на одну сторону весов, третью на другую половину. Все положили? Хорошо. У меня чаши равны. Это значит, что фальшивка в группе, которая у меня на столе. Я вижу, у многих учеников та же ситуация. Теперь мы взвешиваем две монеты из третьей группы. Они тоже одинаковые на вес. Значит, третья фальшивая. Теперь я объясню для тех учеников, у которых при взвешивании двух групп монет весы показали неравенство. На той чаше, где веса меньше, лежит фальшивка. Теперь тоже взвесьте по две монеты.
Формально, для графа {\displaystyle G=(V,E)}G=(V,E) и {\displaystyle K={\mathcal {P}}(V^{2})}{\displaystyle K={\mathcal {P}}(V^{2})} — множества всех двухэлементных подмножеств его вершин, дополнение {\displaystyle G'}G' определяется как пара {\displaystyle (V,K\setminus E)}{\displaystyle (V,K\setminus E)} — граф, с исходным набором вершин, и с набором ребёр, полученным из полного графа удалением имевшихся в заданном графе.
Дополнение пустого графа является полным графом, и наоборот. Независимое множество графа является кликой в дополнении графа, и наоборот. Дополнение любого графа без треугольников не содержит клешней.
Формально, для графа {\displaystyle G=(V,E)}G=(V,E) и {\displaystyle K={\mathcal {P}}(V^{2})}{\displaystyle K={\mathcal {P}}(V^{2})} — множества всех двухэлементных подмножеств его вершин, дополнение {\displaystyle G'}G' определяется как пара {\displaystyle (V,K\setminus E)}{\displaystyle (V,K\setminus E)} — граф, с исходным набором вершин, и с набором ребёр, полученным из полного графа удалением имевшихся в заданном графе.
Дополнение пустого графа является полным графом, и наоборот. Независимое множество графа является кликой в дополнении графа, и наоборот. Дополнение любого графа без треугольников не содержит клешней.