Попробуем понять, что от нас хотят? Поэтому разберёмся для начала, что такое [a]? Как сказано, это наибольшее целое число, не больше а, т.е. меньше или равно. [a] ≤ a.
А чтоб совсем понятно стало, рассмотрим примеры.
Например, а = 6,37, значит, [a] = 6; а = 0,88 и [a] = 0; a = 1,0 и [a] = 1.
Т.о отбрасывается дробная часть.
Это для положительных чисел, а для отрицательных? Здесь отбрасывание дробной части не даёт результата.
Например, a = -6,37 и, если [a] =-6, то -6 ≥ -6,37, т.е. [a] > a, что расходится с условием. Поэтому, [a] = -7 (!)
a = -2,03 и [a] = -3; a = -0,88 и [a] = -1; a = -1,0 и [a] = -1.
Т.о., если есть дробная часть, то она отбрасывается и производится вычитание единицы.
Теперь разбираемся с условием, вероятность которого необходимо вычислить: . Равенство будет выполняться. если два случайных числа будут попадать в одинаковые интервалы, дающие при получении наибольшего целого, не превосходящее само число.
Какой интервал надо разбивать? Разбивать надо интервал (0, 1), но так, чтобы в граничных точках давал целые значения. Причём в интервале (0, 1) логарифм по основанию 2 меньше нуля.
Например:
Отсюда, становятся понятны интервалы (справа налево):
от 1 до 1/2 - здесь
от 1/2 до 1/4 - здесь
от 1/4 до 1/8 - здесь
И т.д., интервал всё время сокращается в два раза.
Наконец, переходим непосредственно к вероятности. Вероятность выбора числа х из интервала от 1 до 1/2 равна отношению длины этого интервала к общей длине. Длина интервала = 1/2, общая длина = 1. Вероятность равна 1/2. Точно такая же вероятность случайного выбора числа у из этого же интервала - 1/2. Т.к. события не зависят друг от друга, то вероятность одновременного попадания обоих чисел в этот интервал равна 1/4 = 1/2 * 1/2.
Аналогично вычисляются вероятности попадания в остальные интервалы. Так вероятность попадания чисел х и у в интервал от 1/2 до 1/4 равна: 1/16 = 1/4 * 1/4. Ширина интервала равна 1/4, значит, и вероятности каждого события равны 1/4.
Вероятность попадания в третий интервал от 1/4 до 1/8 равна:
1/64 = 1/8 * 1/8. И т.д.
Стал ясен алгоритм вычисления нашей вероятности. Надо для бесконечного числа интервалов вычислить вероятность совместного попадания двух чисел, а затем всё А вот здесь нам в бесконечных вычислениях геометрическая прогрессия. Замечаем, что первый член равен 1/4, а знаменатель прогрессии 1/4. Поэтому, мы без проблем найдём сумму бесконечно убывающей геометрической прогрессии.
Пошаговое объяснение:
''-2y'+5y=sinx y(0)=1 y'(0)=2
1) Общее
y"-2y'+5y=0
Характеристическое уравнение:
K^2-2k+5=0
d=4-20=-16
K1=1+4i; K2=1-4i
Y=e^x (C1 cos2x+C2 sin2x)
2)Частное решение
y=A cosx+ B sinx
y'=(A cosx+B sinx)'=-Asinx+Bcosx
y"=(-Asinx+Bcosx)'=-Acosx-Bsinx
Подставим
-Acosx-Bsinx+2Asinx-2Bcosx+5Acosx+5Bsinx=sinx
(4A-2B)cosx+(4B+2A)sinx=sinx
{4A-2B=0 , 2A+4B=1 {4A-2B=0 , 4A+8B=2 {4A=2B , 4A+8B=2
2B+8B=2
10B=2
B=0,2
A=0,1
y(с изогнутой линией наверху)=0,1cosx+0,2sinx
3)y=Y+y(с изогнутой линией наверху)=e^x (C1 cos2x+C2 sin2x)+0,1cosx+0,2sinx
4) Если все верно, то что-то нужно сделать с этим "y(0)=1 y'(0)=2" условием. Не понимаю что.
Попробуем понять, что от нас хотят? Поэтому разберёмся для начала, что такое [a]? Как сказано, это наибольшее целое число, не больше а, т.е. меньше или равно. [a] ≤ a.
А чтоб совсем понятно стало, рассмотрим примеры.
Например, а = 6,37, значит, [a] = 6; а = 0,88 и [a] = 0; a = 1,0 и [a] = 1.
Т.о отбрасывается дробная часть.
Это для положительных чисел, а для отрицательных? Здесь отбрасывание дробной части не даёт результата.
Например, a = -6,37 и, если [a] =-6, то -6 ≥ -6,37, т.е. [a] > a, что расходится с условием. Поэтому, [a] = -7 (!)
a = -2,03 и [a] = -3; a = -0,88 и [a] = -1; a = -1,0 и [a] = -1.
Т.о., если есть дробная часть, то она отбрасывается и производится вычитание единицы.
Теперь разбираемся с условием, вероятность которого необходимо вычислить: . Равенство будет выполняться. если два случайных числа будут попадать в одинаковые интервалы, дающие при получении наибольшего целого, не превосходящее само число.
Какой интервал надо разбивать? Разбивать надо интервал (0, 1), но так, чтобы в граничных точках давал целые значения. Причём в интервале (0, 1) логарифм по основанию 2 меньше нуля.
Например:
Отсюда, становятся понятны интервалы (справа налево):
от 1 до 1/2 - здесь
от 1/2 до 1/4 - здесь
от 1/4 до 1/8 - здесь
И т.д., интервал всё время сокращается в два раза.
Наконец, переходим непосредственно к вероятности. Вероятность выбора числа х из интервала от 1 до 1/2 равна отношению длины этого интервала к общей длине. Длина интервала = 1/2, общая длина = 1. Вероятность равна 1/2. Точно такая же вероятность случайного выбора числа у из этого же интервала - 1/2. Т.к. события не зависят друг от друга, то вероятность одновременного попадания обоих чисел в этот интервал равна 1/4 = 1/2 * 1/2.
Аналогично вычисляются вероятности попадания в остальные интервалы. Так вероятность попадания чисел х и у в интервал от 1/2 до 1/4 равна: 1/16 = 1/4 * 1/4. Ширина интервала равна 1/4, значит, и вероятности каждого события равны 1/4.
Вероятность попадания в третий интервал от 1/4 до 1/8 равна:
1/64 = 1/8 * 1/8. И т.д.
Стал ясен алгоритм вычисления нашей вероятности. Надо для бесконечного числа интервалов вычислить вероятность совместного попадания двух чисел, а затем всё А вот здесь нам в бесконечных вычислениях геометрическая прогрессия. Замечаем, что первый член равен 1/4, а знаменатель прогрессии 1/4. Поэтому, мы без проблем найдём сумму бесконечно убывающей геометрической прогрессии.
Итак, вероятность оказалась равно 1/3, или .
Пошаговое объяснение: