Решите ) желательно быстро
альба и черри играют в «быки и коровы» по особенным правилам. вначале
альба задумывает какую-то перестановку чисел от 1 до 2020 (т.е. последовательность
чисел, в которой каждое из чисел от 1 до 2020 встречается ровно один раз). после этого
черри пишет на доске перестановок чисел от 1 до 2020, а альба, после того как черри выпишет все свои перестановки, про каждое число в каждой перестановке сообщает
черри стоит оно на том же месте, что и в его перестановке, левее или правее. при каком
наименьшем черри гарантированно сможет после этого назвать перестановку альбы?
Нехай Похила перетинає площину в точці B.
З точки а опустимо перпендикуляр до площини α в точку С, що належить площині. АС і буде відстанню від точки А до площини. ВС - проекція похилої.
У прямокутному трикутнику АВС відома гіпотенуза АВ, рівна 6 см, і кут в = 60 градусів. Знайдемо катети.
Кут в дорівнює 60 градусам, тоді кут А дорівнює 30.
Катет, що лежить проти кута А дорівнює половині гіпотенузи, значить
НД = 1/2*АВ = 1/2 * 6 = 3 см.
За теормеме Піфагора знаходимо другий катет
АС = √(АВ2-ВС2) = √(36-9) = √25 = 5,
Відповідь: 3 см - Довжина проекції, 5 см - відстань від точки А до площини.
Будем считать, что точки A(1,-1,4), B(2,5,1), C(2,1,1) даны для определения уравнения плоскости, проходящей через эти точки.
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA
= 0
Подставим данные и упростим выражение:
x - 1 y - (-1) z - 4
2 - 1 5 - (-1) 1 - 4
2 - 1 1 - (-1) 1 - 4
= 0
x - 1 y - (-1) z - 4
1 6 -3
1 2 -3
= 0
(x - 1) (6·(-3)-(-3)·2) - (y - (-1)) (1·(-3)-(-3)·1) + (z - 4) (1·2-6·1) = 0
(-12) (x - 1) + 0 (y - (-1)) + (-4) (z - 4) = 0
- 12x - 4z + 28 = 0.
Можно сократить на -4 и получим уравнение 3x + z - 7 = 0.
Нормальный (это перпендикулярный) вектор этой плоскости равен:
n = (3; 0 ; 1) модуль (длина) его равна √(9+0+1) = √10.
Отсюда получаем путём нормирования единичный вектор:
n1 = ((3/√10); 0; (1/√10).