Для решения данного линейного уравнения необходимо провести раскрытие скобок в левой его части.
0,4 * (1,3 + 5/9 * x) = 0,4 * 1,3 + 0,4 * 5/9 * x = 0,52 + 0,4 * 5/9 * x .
Во втором сомножителе десятичную дробь 0,4 заменяем на обыкновенную, проводим сокращение числителя и знаменателя на число 5.
0,52 + 0,4 * 5/9 * x = 0,52 + 4/10 * 5/9 * x = 0,52 + 2/5 * 5/9 * x = 0,52 + 2/9 * х.
После преобразования левой части уравнение примет вид.
0,52 + 2/9 * х = 7/9 * x - 1,48.
Сомножители с неизвестным х переносим в левую часть уравнения, а свободные члены в правую.
2/9 * х - 7/9 * x = -1,48 - 0,52.
- 5/9 * x = -2.
х = 2 * 9/5.
х = 18/5 = 3,6.
ответ. 3,6.
Пояснение:
Есть три рубашки - рубашка№1, рубашка№2, рубашка№3.
Так как у Дмитрия Григорьевича одна пара туфель и одни брюки, то и туфли, и брюки входят в каждый возможный комплект одежды.
Теперь отметим каждый комплект отдельно:
Комплект одежды №1 - туфли, брюки, обычный галстук, рубашка№1
Комплект одежды №2 - туфли, брюки, обычный галстук, рубашка№2
Комплект одежды №3 - туфли, брюки, обычный галстук, рубашка№3
Комплект одежды №4 - туфли, брюки, галстук бабочка, рубашка№1
Комплект одежды №5 - туфли, брюки, галстук бабочка, рубашка№2
Комплект одежды №6 - туфли, брюки, галстук бабочка, рубашка№3
Для решения данного линейного уравнения необходимо провести раскрытие скобок в левой его части.
0,4 * (1,3 + 5/9 * x) = 0,4 * 1,3 + 0,4 * 5/9 * x = 0,52 + 0,4 * 5/9 * x .
Во втором сомножителе десятичную дробь 0,4 заменяем на обыкновенную, проводим сокращение числителя и знаменателя на число 5.
0,52 + 0,4 * 5/9 * x = 0,52 + 4/10 * 5/9 * x = 0,52 + 2/5 * 5/9 * x = 0,52 + 2/9 * х.
После преобразования левой части уравнение примет вид.
0,52 + 2/9 * х = 7/9 * x - 1,48.
Сомножители с неизвестным х переносим в левую часть уравнения, а свободные члены в правую.
2/9 * х - 7/9 * x = -1,48 - 0,52.
- 5/9 * x = -2.
х = 2 * 9/5.
х = 18/5 = 3,6.
ответ. 3,6.