Пошаговое объяснение:
1.Четность/нечетность
Функция четна, так как симметричная относительно нуля. Это легко проверить так как f(-x) = f(x).
2. Периодичность
Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т).
Такого на графике не наблюдается, значит функция непериодична.
3. Монотонность(возрастание и убывание)
Функция возрастает на интервалах (-10;-6), (0;6). Функция убывает на интервалах (-6;0),(6;10).
4. Экстремумы
Точка Хmax называется точкой максимума выполнено неравенство f(х) f(Xmax). Аналогично для минимума.
Функция имеет две точки максимума это точки -6 и 6, и одну точку минимума это 0.
5. Нули функции
Нулем функции y = f(x) называется такое значение аргумента х , при котором функция обращается в нуль: f(x) = 0.
Нули функции это точки 3 и -2
Двузначное число что записал ученик является число 22
Двузначные числа - это числа от 10 до 99
Из них делятся на два только чётные (такие как 10, 12, 14, 16 и т. д.)
Будем решать методом подбора
Для начала возьмём самое меньшее число из тех что подходят по условию, это 10
Приписываем к нему справа его же ⇒ 1010
После делим его на 11 ⇒ 1010 : 11 = 91,(81) (не подходит)
Теперь так же продолжаем с другими числами, пока не получим ответ
12 ⇒ 1212 ⇒ 1212 : 11 = 110,(18) (не подходит)
14 ⇒ 1414 ⇒ 1414 : 11 ⇒ 128,(54) (не подходит)
16 ⇒ 1616 ⇒ 1616 : 11 ⇒ 146,(90) (не подходит)
·································································································
22 ⇒ 2222 ⇒ 2222 : 11 ⇒ 202 (подходит)
Пошаговое объяснение:
1.Четность/нечетность
Функция четна, так как симметричная относительно нуля. Это легко проверить так как f(-x) = f(x).
2. Периодичность
Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т).
Такого на графике не наблюдается, значит функция непериодична.
3. Монотонность(возрастание и убывание)
Функция возрастает на интервалах (-10;-6), (0;6). Функция убывает на интервалах (-6;0),(6;10).
4. Экстремумы
Точка Хmax называется точкой максимума выполнено неравенство f(х) f(Xmax). Аналогично для минимума.
Функция имеет две точки максимума это точки -6 и 6, и одну точку минимума это 0.
5. Нули функции
Нулем функции y = f(x) называется такое значение аргумента х , при котором функция обращается в нуль: f(x) = 0.
Нули функции это точки 3 и -2
Двузначное число что записал ученик является число 22
Пошаговое объяснение:
Двузначные числа - это числа от 10 до 99
Из них делятся на два только чётные (такие как 10, 12, 14, 16 и т. д.)
Будем решать методом подбора
Для начала возьмём самое меньшее число из тех что подходят по условию, это 10
Приписываем к нему справа его же ⇒ 1010
После делим его на 11 ⇒ 1010 : 11 = 91,(81) (не подходит)
Теперь так же продолжаем с другими числами, пока не получим ответ
12 ⇒ 1212 ⇒ 1212 : 11 = 110,(18) (не подходит)
14 ⇒ 1414 ⇒ 1414 : 11 ⇒ 128,(54) (не подходит)
16 ⇒ 1616 ⇒ 1616 : 11 ⇒ 146,(90) (не подходит)
·································································································
22 ⇒ 2222 ⇒ 2222 : 11 ⇒ 202 (подходит)