Рассмотрим один из случаев распределения учеников по трём группам, например, на программировании. По крайней мере в одной группе будет не менее 10-ти человек, потому что если в каждой группе будет меньше десяти человек, то мы не сможем распределить 28 учеников по трём группам (28:3=9(1ост.). Тогда, при распределении по следующим трём группам по крайней мере четверо из десяти опять попадут вместе (10:3=3(1ост.). При третьем распределении по трём группам как минимум двое из четырёх гарантировано попадут в одну группу (4:3=1(1 ост.). Следовательно, минимум двое человек окажется вместе во всех трёх группах. Что и требовалось доказать.
23 шарика
Пошаговое объяснение:
Пусть имеется некоторое количество n шариков.
Тогда n - такое число, которое:
1. при делении его на 8 даёт остаток 7
2. при делении его на 6 даёт остаток 5
3. при делении его на 4 даёт остаток 3
4) n < 45
Из первых трёх пунктов следует, что число n + 1 делится на 8, 6 и 4. Найдём НОК (8,6,4), которое делится на 8, 6, 4 без остатка и которое меньше 45:
НОК чисел 8,6,4 - 24
24 - 1 = 23 < 45
24 * 2 - 1 = 47 > 45
Следовательно, шариков было 23.
Проверим:
23 : 8 = 2 (ост.7)
23 : 6 = 3 (ост.5)
23 : 4 = 5 (ост.3)