ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
скорость время расстояние авто х+48 км/ч был в пути всего меньше вело х км/ч на 5 ч 36 мин 84 км
Составляем уравнение, учитывая, что велосипедист был в пути дольше автомобиля на 5 ч 36 мин = 5_36/60 = 5,6 ч
Приводим к общему знаменателю х(х+48) и отбрасываем его, заметив, что х≠0 и х≠-48 84(х+48)-84х=5,6х(х+48) 84х+48*84-84х=5,6 х^(2) +48*5.6x 5.6 x^(2) +48*5.6x - 48*84 = 0 |*10:8 7x^(2) + 336 x - 5040 = 0 x^(2) +48x-720=0 D=2304+4*720=5184=72^(2) x(1)=(-48+72)/2 = 12 (км/ч) скорость велосипедиста x(2)=(-48-72)/2<0 не подходит под условие задачи (скорость >0)
ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
Пошаговое объяснение:
авто х+48 км/ч был в пути всего
меньше
вело х км/ч на 5 ч 36 мин 84 км
Составляем уравнение, учитывая, что велосипедист был в пути дольше автомобиля на 5 ч 36 мин = 5_36/60 = 5,6 ч
Приводим к общему знаменателю х(х+48) и отбрасываем его, заметив, что х≠0 и х≠-48
84(х+48)-84х=5,6х(х+48)
84х+48*84-84х=5,6 х^(2) +48*5.6x
5.6 x^(2) +48*5.6x - 48*84 = 0 |*10:8
7x^(2) + 336 x - 5040 = 0
x^(2) +48x-720=0
D=2304+4*720=5184=72^(2)
x(1)=(-48+72)/2 = 12 (км/ч) скорость велосипедиста
x(2)=(-48-72)/2<0 не подходит под условие задачи (скорость >0)