Пусть функция определена на множестве E Пусть где . Понятно, что для любого на области от (то есть: ) выполняется . Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется (Проще говоря: ). Следовательно - . Что и требовалось доказать. Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на ! Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "... Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание. А то получается: спрашивают об области, а проверяют точку. Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
В нашем году,то есть году экологии(2017) мы должны и природе и не загрязнать её.Сейчас я приведу пример. Если вы едете в лес,никогда не оставляйте за собой мусор,лучше соберите его в мешок и здайте в центр переработки.Если вы увидели брошенный мусор,то соберите его и отправьте туда же. Существует много заводов и фабрик,загрязняющих наши реки.С этим нужно бороться-использовать фильтры и водоочищающие устройства.Также эти фабрики Портят атмосферу,загрязняя её.И снова сдесь фильтры! Я хотел бы сказать,что нужно беречь природу,ведь без природы нам будет очень тяжко!Старайтесь не бросать мусор и выбрасывать его куда попало.
Пусть где .
Понятно, что для любого на области от (то есть: ) выполняется .
Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется
(Проще говоря:
). Следовательно - .
Что и требовалось доказать.
Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на !
Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "...
Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание.
А то получается: спрашивают об области, а проверяют точку.
Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
Если вы едете в лес,никогда не оставляйте за собой мусор,лучше соберите его в мешок и здайте в центр переработки.Если вы увидели брошенный мусор,то соберите его и отправьте туда же.
Существует много заводов и фабрик,загрязняющих наши реки.С этим нужно бороться-использовать фильтры и водоочищающие устройства.Также эти фабрики Портят атмосферу,загрязняя её.И снова сдесь фильтры!
Я хотел бы сказать,что нужно беречь природу,ведь без природы нам будет очень тяжко!Старайтесь не бросать мусор и выбрасывать его куда попало.