Все четырехзначные числа имеют такое строение: aabb, bbaa, abab, baba, abba, baab, где a и b - однозначные числа (цифры).
Следовательно, всего комбинаций таких чисел выходит 9 * 9 * 6 = 486 (для цифры a - 9 возможностей, для цифры b - столько же, и еще 6 комбинаций различных расстановок). но еще нужно разделить полученное число на 2, потому что пример для а = 1 и b = 2 - это тоже самое, что и наоборот. Сейчас мы имеем уже 243 числа.
Но также хорошими четырехзначными числами являются числа вида 1111, 2222, 3333, ... , 9999. Таких чисел всего 9 и повторяются они целых 6 раз (по числу комбинаций из чисел a и b). Всего таких чисел было посчитано 9 * 6 = 54, но 9 из них нужно оставить, а еще 27 (половину) мы вычли, когда делили на 2. Поэтому надо вычесть 54 - 27 - 9 = 18. Что мы и сделаем: 243 - 18 = 225.
Это и есть ответ. Задача решена!
Примечание.
Можно посчитать общее количество хороших чисел, прибавив еще хорошие числа с нулем. Понятно, что это числа вида aabb, abba, abab, где а ≠ 0. Тогда b = 0. Поэтому таких комбинаций будет 9 * 3 (для числа a есть 9 разных значений [b неизменно равно нулю], а всего комбинаций такого вида есть 3). Теперь можно найти полный ответ: 225 + 27 = 252 хороших четырхзначных чисел всего.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)
ответ: 225 чисел.
Все четырехзначные числа имеют такое строение: aabb, bbaa, abab, baba, abba, baab, где a и b - однозначные числа (цифры).
Следовательно, всего комбинаций таких чисел выходит 9 * 9 * 6 = 486 (для цифры a - 9 возможностей, для цифры b - столько же, и еще 6 комбинаций различных расстановок). но еще нужно разделить полученное число на 2, потому что пример для а = 1 и b = 2 - это тоже самое, что и наоборот. Сейчас мы имеем уже 243 числа.
Но также хорошими четырехзначными числами являются числа вида 1111, 2222, 3333, ... , 9999. Таких чисел всего 9 и повторяются они целых 6 раз (по числу комбинаций из чисел a и b). Всего таких чисел было посчитано 9 * 6 = 54, но 9 из них нужно оставить, а еще 27 (половину) мы вычли, когда делили на 2. Поэтому надо вычесть 54 - 27 - 9 = 18. Что мы и сделаем: 243 - 18 = 225.
Это и есть ответ. Задача решена!
Примечание.
Можно посчитать общее количество хороших чисел, прибавив еще хорошие числа с нулем. Понятно, что это числа вида aabb, abba, abab, где а ≠ 0. Тогда b = 0. Поэтому таких комбинаций будет 9 * 3 (для числа a есть 9 разных значений [b неизменно равно нулю], а всего комбинаций такого вида есть 3). Теперь можно найти полный ответ: 225 + 27 = 252 хороших четырхзначных чисел всего.