РядС смор
1. Реши задачу:
В ёлочной гирлянде 3 ряда по 7 красных лампочек,4 ряда синих
по 8 лампочек. Сколько в гирлянде лампочек?
2
2. Реши примеры:
75 + 25 =
90 -33 =
82 + 18 =
60 – 24 =
45 – 36 =
83 - 18 =
1
1
3. Реши уравнения:
50 +х= 68
50-х=27
25.11 Среда
1. Вычисли столбиком:
53 + 37 =
86 – 35 =
36 + 23 =
80 – 56 =
65 + 17 =
88 - 71 =
2. Реши уравнения:
64 – х = 41
30 +х= 67
3. Реши задачу:
\begin{gathered}a) \int{(x^4-8x^3+4x)}dx=\\ | \int{x^{\alpha}dx}= \frac{x^{\alpha+1}}{\alpha+1}+C|\\ = \int{x^4}dx-8\int{x^3}dx+4\int{x^1}dx=\\ = \frac{x^{4+1}}{4+1}-8 \frac{x^{3+1}}{3+1}+4 \frac{x^{1+1}}{1+1}+C=\\ = \frac{x^5}{5}- \frac{8x^4}{4}+ \frac{4x^2}{2}+C=\\ = \frac{x^5}{5}-2x^4+2x^2+c;\\ \end{gathered}a)∫(x4−8x3+4x)dx=∣∫xαdx=α+1xα+1+C∣=∫x4dx−8∫x3dx+4∫x1dx==4+1x4+1−83+1x3+1+41+1x1+1+C==5x5−48x4+24x2+C==5x5−2x4+2x2+c;
\begin{gathered}b) \int{\cos(2x)sin(x)}dx=|d(\cos(x))=-\sin(x)dx|=\\ =-\int{\cos(2x)d(\cos(x))}=\\ |\cos(2\alpha)=\cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha|\\ =-\int{(2\cos^2(x)-1)}d(\cos(x))=| t=\cos(x)|=\\ =-\int{(2t^2-1)}dt=|\int{x^{alpha}}dx= \frac{x^{\alpha+1}}{\alpha+1}+C|\\ =-2\int{t^2}dt+\int{t^0}dt=-2 \frac{t^{2+1}}{2+1}+ \frac{t^{0+1}}{0+1}=\\ =- \frac{2}{3}t^3+t+C=|t=\cos(x)|=\cos(x)- \frac{2}{3}\cos^3(x)+C=\\ \cos(x)(1- \frac{2}{3}\cos^2(x))+C=\\ =\cos(x)(1- \frac{2}{3}(1-\sin^2(x))+C= \end{gathered}b)∫cos(2x)sin(x)dx=∣d(cos(x))=−sin(x)dx∣==−∫cos(2x)d(cos(x))=∣cos(2α)=cos2α−sin2α=2cos2α−1=1−2sin2α∣=−∫(2cos2(x)−1)d(cos(x))=∣t=cos(x)∣==−∫(2t2−1)dt=∣∫xalphadx=α+1xα+1+C∣=−2∫t2dt+∫t0dt=−22+1t2+1+0+1t0+1==−32t3+t+C=∣t=cos(x)∣=cos(x)−32cos3(x)+C=cos(x)(1−32cos2(x))+C==cos(x)(1−32(1−sin2(x))+C=
\begin{gathered}=\cos(x)(1- \frac{2}{3}+ \frac{2}{3}\sin^2(x))+C=\\ =\cos(x)( \frac{1}{3}+ \frac{2}{3}\sin^2(x))+C=\\ = \frac{1}{3}\cos(x)(1+2\sin^2(x))+C; \end{gathered}=cos(x)(1−32+32sin2(x))+C==cos(x)(31+32sin2(x))+C==31cos(x)(1+2sin2(x))+C;
\begin{gathered}c)\int(e^{3x}+1)dx=\int{e^{3x}}dx+\int{}dx=\\ |\int{e^x}dx=e^x+C; \int{x^\alpha}dx= \frac{x^{\alpha+1}}{\alpha+1}+C;d(x)= \frac{1}{3}dx|}\\ = \frac{1}{3}\int{e^{3x}}d(3x)+\int{x^0}dx=\\ = \frac{1}{3}e^{3x}+ \frac{x^{0+1}}{0+1}+C=\\ = \frac{1}{3}e^{3x}+x+C \end{gathered}
t+m=11
m+k=15
t+k=14
Из первого уравнения t=11-m.
Из второго уравнения k=15-m.
Подставим эти выражения в третье уравнение:
11-m+(15-m)=14
26-2m=14
26-14=2m
2m=12
m=6 (конфет) - столько конфет съела Маша.
Из первого уравнения t=11-m=11-6=5 (конфет) - столько конфет съела Таня.
Из второго уравнения k=15-m=15-6=9 (конфет) - столько конфет съела Катя.
Тогда общее количество съеденных конфет составит:
m+t+k=6+5+9=20 (конфет).
Можно решить задачу проще:
просуммируем все три уравнения системы:
t+m+m+k+t+k=11+15+14
2t+2m+2k=40
2(t+m+k)=40
t+m+k=40/2=20 (конфет)