Пусть х - количество грибов, собранных Васей. Тогда: 2х - собрал Петя. 3х - собрал Дима. Уравнение: х + 2х + 3х = 30 6х = 30 х = 30:6 х = 5 грибов собрал Вася. 2х = 2•5 = 10 грибов собрал Петя. 3х = 3•5 = 15 грибов собрал Дима. ответ: 5, 10 и 15 грибов.
Проверка: 5+10+15=30 грибов было собрано грибов.
Или задача на части. Пусть 1 часть собрал Вася. 1) 1•2 = 2 части собрал Петя. 2) 1•3 = 3 части собрал Дима. 3) 1+2+3 = 6 частей собрали мальчики вместе. 4) 30:6=5 грибов в одной части - собрал Вася. 5) 5•2= 10 грибов в двух частях - собрал Петя. 6) 5•3=15 грибов в трех частях - собрал Диса.
Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Тогда:
2х - собрал Петя.
3х - собрал Дима.
Уравнение:
х + 2х + 3х = 30
6х = 30
х = 30:6
х = 5 грибов собрал Вася.
2х = 2•5 = 10 грибов собрал Петя.
3х = 3•5 = 15 грибов собрал Дима.
ответ: 5, 10 и 15 грибов.
Проверка:
5+10+15=30 грибов было собрано грибов.
Или задача на части.
Пусть 1 часть собрал Вася.
1) 1•2 = 2 части собрал Петя.
2) 1•3 = 3 части собрал Дима.
3) 1+2+3 = 6 частей собрали мальчики вместе.
4) 30:6=5 грибов в одной части - собрал Вася.
5) 5•2= 10 грибов в двух частях - собрал Петя.
6) 5•3=15 грибов в трех частях - собрал Диса.
Обозначим центр окружности сечения O' и ее радиус r.
Расстояние от O до O' равно ρ.
Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы.
Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R.
При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Рассмотрим треугольник OO'A.
OO' ⊥ AB, OA = R, O'A = r, OO' = ρ
По теореме Пифагора имеем равенство: R² = r² + ρ² ⇒ r² = R² - ρ².
r² = 14² - 8² = (14-8)(14+8) = 6*22 = 12*11.
r = √(12*11) = 2√33.
L = 2πr = 2·2√33·π = 4π√33