Будем считать, что x≥y. Заметим, что x²-xy+y²≥xy для любых натуральных x,y. x+y=x²-xy+y²≥xy ⇒ x+y≥xy. Так как x+y≤2x, 2x≥xy, откуда y≤2. То есть, возможны всего два случая: y=1, y=2.
Подставив y=1 в исходное уравнение, имеем x+1=x²-x+1, откуда x²-2x=0, x=0, x=2, значит, пара (2;1) решение. Заметим, что пара (1;2) тогда тоже будет решением - в исходном уравнении значения x и y можно поменять местами, не нарушая равенство (иначе пришлось бы рассматривать два случая - x≥y и x<y, здесь же мы можем утверждать, что если (a,b) - решение, то и (b,a) - решение).
Подставив y=2, имеем x+2=x²-2x+4 ⇒ x²-3x+2=0 ⇒ (x-1)(x-2)=0. Решение x=1, y=2 уже было учтено ранее, кроме этого, есть ещё одно решение: x=2, y=2. Других вариантов нет.
Следование в школу1.Никуда не заходить2.На дорогах смотреть по сторонам3.Не опаздывать на уроки.Из школы домой 1.Не подходить к незнакомым 2.Не разговаривать с незнакомыми3.Прийти во время домой На пути в магазин 1.На дороге смотреть по сторонам2.Не тратить деньги теда куда не нужно3.Купить самое важное4.Не болтаться по магазинам по пустуОбратно из магазина 1.Не заходить никуда2.Прийти домой Посещение общественного места(стадиона,театра,музея) 1.Вести себя тихо.2.Выключить сотовые телефоны3.Не высказывать своего мнения(найдутся более фанатичные люди чем ты) 4.Не бегать туда сюда .Можно потеряться.5.В некоторых местах нельзя есть и пить .6.И вообще в каждом общественном месте надо вести себя по-разному но пристойно
x+y=x²-xy+y²≥xy ⇒ x+y≥xy. Так как x+y≤2x, 2x≥xy, откуда y≤2.
То есть, возможны всего два случая: y=1, y=2.
Подставив y=1 в исходное уравнение, имеем x+1=x²-x+1, откуда x²-2x=0, x=0, x=2, значит, пара (2;1) решение. Заметим, что пара (1;2) тогда тоже будет решением - в исходном уравнении значения x и y можно поменять местами, не нарушая равенство (иначе пришлось бы рассматривать два случая - x≥y и x<y, здесь же мы можем утверждать, что если (a,b) - решение, то и (b,a) - решение).
Подставив y=2, имеем x+2=x²-2x+4 ⇒ x²-3x+2=0 ⇒ (x-1)(x-2)=0. Решение x=1, y=2 уже было учтено ранее, кроме этого, есть ещё одно решение: x=2, y=2. Других вариантов нет.
ответ: (x=2, y=1), (x=1, y=2), (x=2, y=2).