Даны точки А(0;-5;0), В(0;0;2) и плоскость x+5y+2z-10=0.
Нормальный вектор заданной плоскости N = (1; 5; 2) будет направляющим (параллельным) для перпендикулярной искомой плоскости.
Также, вектор АВ = (0; 5; 2), через который должна проходить искомая плоскость, тоже будет направляющим вектором.
Если плоскость проходит через точку A(0; -5; 0)) параллельно
двум векторам N и АВ, то уравнением этой плоскости будет уравнение вида:
x-0 y+5 z-0| x-0 y+5
1 5 2 | 1 5
0 5 2 | 0 5 = 0.
Решаем систему методом "наклонных полосок".
10(x-0) + 0(y+5) + 5(z-0) - 2(y+5) - 10(x-0) = 0.
Раскрываем скобки и приводим подобные.
-2y - 10 + 5z = 0 или 2y - 5z + 10 = 0.
ответ: 2y - 5z + 10 = 0.
Пошаговое объяснение:
1) для нахождения экстремума сперва найдем критические точки.
для этого найдем первую производную
теперь приравняем ее к 0
⇒ х₁ = 0; х₂ = 2; это точки экстремума
теперь найдем значения функции в этих точках
y(0) = -2
y(2) = 2
таким образом мы нашли экстремумы функции
2) вся теория та же, запишу только вычисления
y=x-ln(1+x)
здесь будет одна точка экстремума
значение функции в этой точке
у(0)=0
теперь надо понять максимум это или минимум
для этого найдем вторую производную и ее значение в т х₁=0
если у"(х₁) будет >0 - значит точка x₁ = 0 точка минимума функции.
если у"(х₁) будет <0 - значит точка x₁ = 0 точка максимума функции.
итак, вторая производная
y''(0)=1 > 0 - значит точка x₁ = 0 точка минимума функции.
Даны точки А(0;-5;0), В(0;0;2) и плоскость x+5y+2z-10=0.
Нормальный вектор заданной плоскости N = (1; 5; 2) будет направляющим (параллельным) для перпендикулярной искомой плоскости.
Также, вектор АВ = (0; 5; 2), через который должна проходить искомая плоскость, тоже будет направляющим вектором.
Если плоскость проходит через точку A(0; -5; 0)) параллельно
двум векторам N и АВ, то уравнением этой плоскости будет уравнение вида:
x-0 y+5 z-0| x-0 y+5
1 5 2 | 1 5
0 5 2 | 0 5 = 0.
Решаем систему методом "наклонных полосок".
10(x-0) + 0(y+5) + 5(z-0) - 2(y+5) - 10(x-0) = 0.
Раскрываем скобки и приводим подобные.
-2y - 10 + 5z = 0 или 2y - 5z + 10 = 0.
ответ: 2y - 5z + 10 = 0.
Пошаговое объяснение:
1) для нахождения экстремума сперва найдем критические точки.
для этого найдем первую производную
теперь приравняем ее к 0
⇒ х₁ = 0; х₂ = 2; это точки экстремума
теперь найдем значения функции в этих точках
y(0) = -2
y(2) = 2
таким образом мы нашли экстремумы функции
2) вся теория та же, запишу только вычисления
y=x-ln(1+x)
здесь будет одна точка экстремума
значение функции в этой точке
у(0)=0
теперь надо понять максимум это или минимум
для этого найдем вторую производную и ее значение в т х₁=0
если у"(х₁) будет >0 - значит точка x₁ = 0 точка минимума функции.
если у"(х₁) будет <0 - значит точка x₁ = 0 точка максимума функции.
итак, вторая производная
y''(0)=1 > 0 - значит точка x₁ = 0 точка минимума функции.