Что мы будем использовать: последовательность монотонно возрастает и имеет конечный предел; этот предел обозначается буквой e. Первые цифры числа e все знают. Для нас достаточно знать, что
1) При n=1 неравенство очевидно. Предположим, что оно справедливо при некотором n, и докажем, что тогда оно справедливо при n+1. Итак, нужно доказать, что Имеем:
2) При n=1 неравенство очевидно. Предположив, что при некотором n неравенство справедливо, докажем, что
Имеем:
Доказательство завершено благодаря тому, что все натуральные числа расположены "по порядку" одно за другим, и есть первое натуральное число (принцип домино: если доминошки расположить на боку одну рядом с другой на небольшом расстоянии друг от друга в виде змеи, и уронить первую доминошку на вторую, то вторая упадет на третью, третья на четвертую и так далее, пока не упадут все).
Что мы будем использовать: последовательность монотонно возрастает и имеет конечный предел; этот предел обозначается буквой e. Первые цифры числа e все знают. Для нас достаточно знать, что
1) При n=1 неравенство очевидно. Предположим, что оно справедливо при некотором n, и докажем, что тогда оно справедливо при n+1. Итак, нужно доказать, что Имеем:
2) При n=1 неравенство очевидно. Предположив, что при некотором n неравенство справедливо, докажем, что
Имеем:
Доказательство завершено благодаря тому, что все натуральные числа расположены "по порядку" одно за другим, и есть первое натуральное число (принцип домино: если доминошки расположить на боку одну рядом с другой на небольшом расстоянии друг от друга в виде змеи, и уронить первую доминошку на вторую, то вторая упадет на третью, третья на четвертую и так далее, пока не упадут все).
нескольких букв, то это число называют числовым коэффициентом
(или просто коэффициентом).
Например: 5 • а = 5а ; 5 — коэффициент.
Коэффициент обычно пишут перед буквенными множителями.
Коэффициентом такого выражения, как а или аb , считают 1 ,
так как:
а = 1 • а = 1а; ab = 1 • ab = 1ab.
При умножении –1 на любое число а получается число –а .
–1 • a = –1a = –а.
Поэтому числовым коэффициентом выражения –a считают число –1 .