С МАТЕМАТИКОЙ ОСТАЛОСЬ ПОЛ ЧАСА 1Дано куб АВСДА1В1С1Д1 його вершини А. В и Д належаать площині а Треба довести що пряма А1В1 паралельна площині а Треба знайти площу перерізу куба площиною, що проходить через середини його бічних ребер, якщо ребро куба 8 см 2. Вершина С трикутника АВС не належить площині а, яка містить сторону АВ. На сторонах СА и СВ позначено точки А1 и В відповідно, причому АС:А1С=СВ:СВ1=2:1. Доведіть що В1А1//АВ
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
Расстояние от вершины треугольника до противолежащей стороны (высота) находят как произведение боковой стороны на синус прилежащего к стороне и основанию угла О - вершина трех треугольников здесь и дальше подразумеваем что высота опущена из точки О высота треугольника АВО h1 = ОВ*sin(угол АВО) высота треугольника ВСО h2 = ОВ*sin(угол СВО) так как ВО - биссектриса угол АВО = угол СВО значит h2 = ОВ*sin(АВО) = h1 заметим, что h2 = CО *sin(угол ВСО) высота треугольника СДО h3 = СО*sin(угол ДСО) так как СО - биссектриса угол ВСО = угол ДСО значит h3 = СО*sin(угол ВСО) = h2 мы получили h1 = h2 = h3 - доказано !
190 прямых
Пошаговое объяснение:
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
C₂₀²=20!/((20-2)!2!)=19*20/2=190.
О - вершина трех треугольников
здесь и дальше подразумеваем что высота опущена из точки О
высота треугольника АВО h1 = ОВ*sin(угол АВО)
высота треугольника ВСО h2 = ОВ*sin(угол СВО)
так как ВО - биссектриса угол АВО = угол СВО значит h2 = ОВ*sin(АВО) = h1
заметим, что h2 = CО *sin(угол ВСО)
высота треугольника СДО h3 = СО*sin(угол ДСО)
так как СО - биссектриса угол ВСО = угол ДСО значит h3 = СО*sin(угол ВСО) = h2
мы получили h1 = h2 = h3 - доказано !