В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
anisinivan09p08i87
anisinivan09p08i87
07.01.2020 04:43 •  Математика

с математикой (Решить подробно) очень


с математикой (Решить подробно) очень

Показать ответ
Ответ:
Danya135evlanov
Danya135evlanov
02.02.2023 15:21

Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

Пошаговое объяснение:

1. Рассмотрим, например, такое неравенство

\genfrac{}{}{}{0}{\displaystyle x^2+2x-3}{\displaystyle \left( x-7 \right)\left( x+5 \right)} \geqslant 0

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. (Если вы не помните, что такое нули функции и знак функции на промежутке – смотрите статью «Исследование графика функции»).

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида  ax^2+bx+c.

ax^2+bx+c=a\left( x-x_1 \right)\left( x-x_2 \right), где x_1 и x_2 — корни квадратного уравнения ax^2+bx+c=0.

Получим:

\genfrac{}{}{}{0}{\displaystyle \left( x-1 \right)\left( x+3 \right)}{\displaystyle \left( x-7 \right)\left( x+5 \right)} \geqslant 0

Рисуем ось X и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя -5 и 7 - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя -3 и 1 - закрашены, так как неравенство нестрогое. При x=-3 и x=1 наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось X на 5 промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.

1) x<-5. Возьмем, например, x=-10 и проверим знак выражения \genfrac{}{}{}{0}{\displaystyle \left( x-1 \right)\left( x+3 \right)}{\displaystyle \left( x-7 \right)\left( x+5 \right)} в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак \left( + \right).

2) Следующий промежуток: -5<x<-3. Проверим знак при x=-4. Получаем, что левая часть поменяла знак на \left( - \right).

3) -3<x<1. Возьмем x=0. При x=0 выражение положительно - следовательно, оно положительно на всем промежутке от -3 до 1.

4) При 1<x<7 левая часть неравенства отрицательна.  

5) И, наконец, x>7. Подставим x=10 и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак \left( + \right).

Мы нашли, на каких промежутках выражение \genfrac{}{}{}{0}{\displaystyle \left( x-1 \right)\left( x+3 \right)}{\displaystyle \left( x-7 \right)\left( x+5 \right)} положительно. Осталось записать ответ:

ответ: \left( -\infty ;-5 \right)\cup \left[ -3 ;1 \right]\cup \left( 7 ;+ \infty \right).

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным.

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

\genfrac{}{}{}{0}{\displaystyle P\left( x \right)}{\displaystyle Q\left( x \right)} \geqslant 0, или \genfrac{}{}{}{0}{\displaystyle P\left( x \right)}{\displaystyle Q\left( x \right)} > 0, или \genfrac{}{}{}{0}{\displaystyle P\left( x \right)}{\displaystyle Q\left( x \right)} \leqslant 0, или \genfrac{}{}{}{0}{\displaystyle P\left( x \right)}{\displaystyle Q\left( x \right)} < 0.

(в левой части - дробно-рациональная функция, в правой - нуль).

2. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

\genfrac{}{}{}{0}{\displaystyle \left( x-2 \right)^2}{\displaystyle \left( x-1 \right)\left( x-3 \right)} \geqslant 0

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение x=2 Это происходит потому, что при x=2 и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

ответ: \left( -\infty ;1 \right)\cup \{2\} \cup \left( 3 ;+ \infty \right).

В задаче C3 на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют . Будьте внимательны!

0,0(0 оценок)
Ответ:
Zayka1231
Zayka1231
05.06.2023 10:42

А) S=3645 кв.м

Б) S=4572 кв.км

В) S=6345 кв.мм

Пошаговое объяснение:

Когда мы находим периметр квадрата, мы умножаем длину одной стороны на 4 стороны, так как у квадрата все они одинаковые. То есть формула будет: а*4.

А у прямоугольника 4 стороны по 2 одинаковых-длина и ширина. Получается формула: а*2+в*2.

А когда мы находим площадь фигуры, нам надо длину умножить на ширину. Например у квадрата формула будет выглядеть так:а*в хотя все стороны у него одинаковые. А у прямоугольника по 2 одинаковых. Поэтому мы умножаем длину на ширину.

Пример: сторона квадрата 1 см. Найдите его площадь.

формула: а*в

S=1*1=1 КВ. см.

длина прямоугольника 2 см, а ширина 1 см. Найдите его площадь.

формула: а*в

S=2*1=2 КВ. см.

Всегда когда мы нашли площадь мы обязательно пишим КВАДРАТНЫХ=кв.

Пример: кв.см, кв.км, кв.м.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота