1) «Около всякого треугольника можно описать не более одной окружности.» — верно, oколо треугольника можно описать окружность, притом только одну.
2) «В любой треугольник можно вписать не менее одной окружности.» — верно, в любой треугольник можно вписать окружность.
3) «Центром окружности, описанной около треугольника, является точка пересечения биссектрис.» — неверно, центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров треугольника.
4) «Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.» — неверно, центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника.
Пусть х – столько килограммов яблок собрал младший брат, тогда 3х кг – собрал старший брат, а (х + 13) кг – собрал средний брат.
По условию задачи вместе три брата собрали 88 кг яблок.
Имеем уравнение:
х + 3х + (х + 13) = 88,
5х + 13 = 88,
5х = 88 – 13,
5х = 75,
х = 75 : 5,
х = 15.
ответ: 15 кг яблок собрал младший брат
Задание 30,6(х-2)+4,6=0,4(7+х)
0,6x-1,2+4,6=2,8+0,4x
0,6x+3,4=2,8+0,4x
0,6x-0,4x=2,8-3,4
0,2x=-0,6
x=-0,6:0,2
x=-3
Задание 4
Пусть и в первой, и во второй цистернах было х литров воды. Когда из первой цистерны взяли 54 литра воды, то в ней осталось (х - 54) литра, а когда из второй цистерны взяли 6 литров воды, то в ней осталось (х - 6) литров воды. По условию задачи известно, что после этого в первой цистерне воды осталось в 4 раза меньше, чем во второй цистерне. Чтобы уравнять количество воды в обеих цистернах, надо оставшееся меньшее количество воды в первой цистерне умножить на 4 и это будет равно 4(х - 54) литра или (х - 6) литров. Составим уравнение и решим его.
1) «Около всякого треугольника можно описать не более одной окружности.» — верно, oколо треугольника можно описать окружность, притом только одну.
2) «В любой треугольник можно вписать не менее одной окружности.» — верно, в любой треугольник можно вписать окружность.
3) «Центром окружности, описанной около треугольника, является точка пересечения биссектрис.» — неверно, центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров треугольника.
4) «Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.» — неверно, центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника.
ответ: 12.
Пошаговое объяснение:
Задание 117x-8=20x+717x-20x=7+8
-3x=15
-x=5
x=-5
Задание 2Решение задачи:Пусть х – столько килограммов яблок собрал младший брат, тогда 3х кг – собрал старший брат, а (х + 13) кг – собрал средний брат.
По условию задачи вместе три брата собрали 88 кг яблок.
Имеем уравнение:
х + 3х + (х + 13) = 88,
5х + 13 = 88,
5х = 88 – 13,
5х = 75,
х = 75 : 5,
х = 15.
ответ: 15 кг яблок собрал младший брат
Задание 30,6(х-2)+4,6=0,4(7+х)0,6x-1,2+4,6=2,8+0,4x
0,6x+3,4=2,8+0,4x
0,6x-0,4x=2,8-3,4
0,2x=-0,6
x=-0,6:0,2
x=-3
Задание 4Пусть и в первой, и во второй цистернах было х литров воды. Когда из первой цистерны взяли 54 литра воды, то в ней осталось (х - 54) литра, а когда из второй цистерны взяли 6 литров воды, то в ней осталось (х - 6) литров воды. По условию задачи известно, что после этого в первой цистерне воды осталось в 4 раза меньше, чем во второй цистерне. Чтобы уравнять количество воды в обеих цистернах, надо оставшееся меньшее количество воды в первой цистерне умножить на 4 и это будет равно 4(х - 54) литра или (х - 6) литров. Составим уравнение и решим его.
4(x - 54) = x - 6;
4x - 216 = x - 6;
4x - x = 216 - 6;
3x = 210;
x = 210 : 3;
x = 70 (л).
ответ. В каждой цистерне было 70 литров воды.