1+ 2 + 4 + + 2^n/2 = 2^n - 1
1. n = 1
1 = 2^1 - 1 = 1 верно
2. Пусть верно для n = k
3. докажем для n = k+1
1+ 2 + 4 + + 2^(k+1)/2 = 2^(k+1) - 1
2^k - 1 + 2^(k+1)/2 = 2^k - 1 + 2^k = 2*2^k - 1 = 2^(k + 1) - 1 доказано
1+ 2 + 4 + + 2^n/2 = 2^n - 1
1. n = 1
1 = 2^1 - 1 = 1 верно
2. Пусть верно для n = k
3. докажем для n = k+1
1+ 2 + 4 + + 2^(k+1)/2 = 2^(k+1) - 1
2^k - 1 + 2^(k+1)/2 = 2^k - 1 + 2^k = 2*2^k - 1 = 2^(k + 1) - 1 доказано