обозначим прямоугольник авсд. угол мав=45, угол мсв=30. мв=4. поскольку угол мав=45, то в прямоугольном треугольнике амв угол амв=45. тгда этот треугольник равнобедренный и ав=мв=4. мв/вс=tgмсв. отсюда ад=вс=мв/tg30=4 корня из 3. диагональ вд=корень из (ав квадрат + вс квадрат)=корень из (16+48)=8. мд квадрат=мв квадрат + вд квадрат=16+64=80. амквадрат=мвквадрат + ав квадрат=16+16=32. в треугольнике мад ам квадрат + ад квадрат=32+48=80. но это равно мд квадрат значит мд гипотенуза прямоугольного треугольника мад. аналогично мс квадрат=мв квадрат + вс квадрат=16+48=64. тогда в треугольнике мсд мс квадрат + дс квадрат=64+16=80. и он также прямоугольный. стороны равны ав=дс=4. ад=вс=4 корня из 3. площадь мдс равна s мдс=1/2*мс*дс=1/2*8*4=16.
обозначим прямоугольник авсд. угол мав=45, угол мсв=30. мв=4. поскольку угол мав=45, то в прямоугольном треугольнике амв угол амв=45. тгда этот треугольник равнобедренный и ав=мв=4. мв/вс=tgмсв. отсюда ад=вс=мв/tg30=4 корня из 3. диагональ вд=корень из (ав квадрат + вс квадрат)=корень из (16+48)=8. мд квадрат=мв квадрат + вд квадрат=16+64=80. амквадрат=мвквадрат + ав квадрат=16+16=32. в треугольнике мад ам квадрат + ад квадрат=32+48=80. но это равно мд квадрат значит мд гипотенуза прямоугольного треугольника мад. аналогично мс квадрат=мв квадрат + вс квадрат=16+48=64. тогда в треугольнике мсд мс квадрат + дс квадрат=64+16=80. и он также прямоугольный. стороны равны ав=дс=4. ад=вс=4 корня из 3. площадь мдс равна s мдс=1/2*мс*дс=1/2*8*4=16.
дано: y1 = 4 - x², y2 = x² - 2x
найти площадь фигуры.
пошаговое объяснение:
площадь - интеграл разности функций.
рисунок к в приложении.
график функции у1 - выше, чем у функции у2.
находим точки пересечения - решаем квадратное уравнение разности функций.
-x² + 4 = x² - 2x
-2x² + 2x + 4 = 0
a = 2 - верхний предел, b = - 1 - нижний предел.
находим интеграл разности функций - пишем в обратном порядке.
вычисляем
s(2)= 8 + 4 - 5.33 = 6.67
s(-1) = --4 +1 - 0.67 = - 2.33
s = s(2) - s(-1) = 6.67 - (-2.33) = 9 - площадь - ответ.