Определение. любое натуральное число, на которое делится (без остатка) данное натуральное число, называется делителем данного числа. любое натуральное число, которое делится (без остатка) на данное натуральное число, называется кратным данному числу. всякое натуральное число кратно нескольким натуральным числам, самому себе и 1 или только самому себе и 1. например: число 64 кратно числам: 2, 4, 8, 16, 32, 64 и 1. следовательно, число 64 можно записать как произведение двух или более его множителей: 2 * 32 = 64 2 * 4 * 8 = 64 4 * 16 = 64 1 * 64 = 64 число 162 кратно числам: 2. 3, 6, 9, 18, 27, 54, 81, 162, 1. следовательно, число 162 можно записать как произведение двух или больше его множителей: 2 * 81 = 162 2 * 3 * 27 = 162 3 * 54 = 162 3 * 6 * 9 = 162 6 * 27 = 162 1 * 162 = 162 9 * 18 = 162 число 37 кратно числам 37 и 1. следовательно, число 37 можно записать как произведение только двух множителей: 37 * 1 = 37 число 0 (нуль) занимает особое место в разделе чисел. нет числа, которое делилось бы на нуль, так как множитель нуль в составе произведения превращает произведение в нуль. правило. нуль не относится к натуральным числам. на нуль делить нельзя.
Вася накопил 80 рублей 5-копеечными монетами. чтобы отдать долг в 25 рублей другу, он стал отсчитывать монеты, но сбился со счета и решил использовать чашечные весы. как ему выделить нужную сумму за 4 взвешивания, если гирек у него нет? указание. первым взвешиванием вася делит все монеты на две равные по весу кучки и получает две кучки по 40 рублей. далее он аналогично делит одну кучку в 40 рублей на две равных. еще 2 раза проделав такие взвешивания, он в результате будет иметь две кучки по 5 рублей и три кучки в 10, 20 и 40 рублей. сложив кучки в 5 и 20 рублей, он получит нужную сумму. 7.3. агент 007 хочет зашифровать свой номер с двух натуральных чисел т и п так, чтобы . сможет ли он это сделать? ответ: сможет. указание.